Skip to main content
Log in

Loss of TRIM24 promotes IL-10 expression via CBP/p300-dependent IFNβ1 transcription during macrophage activation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

As an anti-inflammatory cytokine, interleukin 10 (IL-10) plays a vital role in preventing inflammatory and autoimmune pathologies while also maintaining immune homeostasis. IL-10 production in macrophages is tightly regulated by multiple pathways. TRIM24, a member of the Transcriptional Intermediary Factor 1 (TIF1) family, contributes to antiviral immunity and macrophage M2 polarization. However, the role of TRIM24 in regulating IL-10 expression and its involvement in endotoxic shock remains unclear.

Methods

In vitro, bone marrow derived macrophages cultured with GM-CSF or M-CSF were stimulated with LPS (100ng/ml). Murine models of endotoxic shock were established by challenging the mice with different dose of LPS (i.p). RTPCR, RNA sequencing, ELISA and hematoxylin and eosin staining were performed to elucidate the role and mechanisms of TRIM24 in endotoxic shock.

Results

The expression of TRIM24 is downregulated in LPS-stimulated bone marrow-derived macrophages (BMDMs). Loss of TRIM24 boosted IL-10 expression during the late stage of LPS-stimulation in macrophages. RNA-seq analysis revealed the upregulation of IFNβ1, an upstream regulator of IL-10, in TRIM24 knockout macrophages. Treatment with C646, a CBP/p300 inhibitor, diminished the difference in both IFNβ1 and IL-10 expression between TRIM24 knockout and control macrophages. Loss of TRIM24 provided protection against LPS-induced endotoxic shock in mice.

Conclusion

Our results demonstrated that inhibiting TRIM24 promoted the expression of IFNβ1 and IL-10 during macrophage activation, therefore protecting mice from endotoxic shock. This study offers novel insights into the regulatory role of TRIM24 in IL-10 expression, making it a potentially attractive therapeutic target for inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets used for the current study are available from the corresponding author upon reasonable request.

References

  1. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Murray Peter J, Allen Judith E, Biswas Subhra K, Fisher Edward A, Gilroy Derek W, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wenjun O, Anne O. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity 2019.

  5. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28:546–58.

    Article  CAS  PubMed  Google Scholar 

  6. Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16:531–43.

    Article  CAS  PubMed  Google Scholar 

  7. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    Article  PubMed  Google Scholar 

  8. Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10:170–81.

    Article  CAS  PubMed  Google Scholar 

  9. Yoo C-H, Yeom J-H, Heo J-J, Song E-K, Lee S-I, Han M-K. Interferon β protects against lethal endotoxic and septic shock through SIRT1 upregulation. Sci Rep. 2014;4:4220–4220.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Howes A, Taubert C, Blankley S, Spink N, Wu X, Graham CM, et al. Differential production of type I IFN determines the reciprocal levels of IL-10 and proinflammatory cytokines produced by C57BL/6 and BALB/c macrophages. J Immunol. 2016;197:2838–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011;11:792–804.

    Article  CAS  PubMed  Google Scholar 

  12. Herquel B, Ouararhni K, Davidson I. The TIF1α-related TRIM cofactors couple chromatin modifications to transcriptional regulation, signaling and tumor suppression. Transcription. 2011;2:231–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhu Q, Yu T, Gan S, Wang Y, Pei Y, Zhao Q, et al. TRIM24 facilitates antiviral immunity through mediating K63-linked TRAF3 ubiquitination. J Exp Med. 2020;217:2.

    Article  Google Scholar 

  14. Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, et al. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun. 2019;10:4353.

    Article  PubMed  PubMed Central  Google Scholar 

  15. McAvera RM, Crawford LJ. TIF1 proteins in genome stability and cancer. Cancers (Basel). 2020;12:2.

    Article  Google Scholar 

  16. Jiang S, Minter LC, Stratton SA, Yang P, Abbas HA, Akdemir ZC, et al. TRIM24 suppresses development of spontaneous hepatic lipid accumulation and hepatocellular carcinoma in mice. J Hepatol. 2015;62:371–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hui Z, Zhou L, Xue Z, Zhou L, Luo Y, Lin F, et al. Cxxc finger protein 1 positively regulates GM-CSF-derived macrophage phagocytosis through Csf2ralpha-mediated signaling. Front Immunol. 2018;9:1885.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol 2008; Chapter 14: 14.1

  19. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24:713–4.

    Article  CAS  PubMed  Google Scholar 

  20. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.

    Article  CAS  Google Scholar 

  23. Yang W, Gu Z, Zhang H, Hu H. To TRIM the immunity: from innate to adaptive immunity. Front Immunol. 2020;11:2.

    Article  Google Scholar 

  24. Ferri F, Parcelier A, Petit V, Gallouet A-S, Lewandowski D, Dalloz M, et al. TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation. Nat Commun. 2015;6:8900.

    Article  CAS  PubMed  Google Scholar 

  25. Merika M, Williams AJ, Chen G, Collins T, Thanos D. Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol Cell. 1998;1:277–87.

    Article  CAS  PubMed  Google Scholar 

  26. Berg DJ, Kühn R, Rajewsky K, Müller W, Menon S, Davidson N, et al. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Investig. 1995;96:2339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zigmond E, Bernshtein B, Friedlander G, Walker Catherine R, Yona S, Kim K-W, et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency causes severe spontaneous colitis. Immunity. 2014;40:720–33.

    Article  CAS  PubMed  Google Scholar 

  28. Shemer A, Scheyltjens I, Frumer GR, Kim J-S, Grozovski J, Ayanaw S, et al. Interleukin-10 prevents pathological microglia hyperactivation following peripheral endotoxin challenge. Immunity. 2020;53:1033-1049.e7.

    Article  CAS  PubMed  Google Scholar 

  29. Ip WKE, Hoshi N, Shouval DS, Snapper SB, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumaran Satyanarayanan S, El Kebir D, Soboh S, Butenko S, Sekheri M, Saadi J, et al. IFN-β is a macrophage-derived effector cytokine facilitating the resolution of bacterial inflammation. Nat Commun. 2019;10:3471.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Khetchoumian K, Teletin M, Tisserand J, Mark M, Herquel B, Ignat M, et al. Loss of Trim24 (Tif1alpha) gene function confers oncogenic activity to retinoic acid receptor alpha. Nat Genet. 2007;39:1500–6.

    Article  CAS  PubMed  Google Scholar 

  32. Herquel B, Ouararhni K, Khetchoumian K, Ignat M, Teletin M, Mark M, et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2011;108:8212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. Cancer Cell. 2016;29:846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perez-Lloret J, Okoye IS, Guidi R, Kannan Y, Coomes SM, Czieso S, et al. T-cell-intrinsic Tif1α/Trim24 regulates IL-1R expression on TH2 cells and TH2 cell-mediated airway allergy. Proc Natl Acad Sci U S A. 2016;113:E568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okoye IS, Czieso S, Ktistaki E, Roderick K, Coomes SM, Pelly VS, et al. Transcriptomics identified a critical role for Th2 cell-intrinsic miR-155 in mediating allergy and antihelminth immunity. Proc Natl Acad Sci U S A. 2014;111:E3081–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buscher K, Ehinger E, Gupta P, Pramod AB, Wolf D, Tweet G, et al. Natural variation of macrophage activation as disease-relevant phenotype predictive of inflammation and cancer survival. Nat Commun. 2017;8:16041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, et al. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med. 2020;18:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009;5: e1000371.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yurdagul A Jr, Subramanian M, Wang X, Crown SB, Ilkayeva OR, Darville L, et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 2020;31:518-533.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duque-Correa MA, Kühl AA, Rodriguez PC, Zedler U, Schommer-Leitner S, Rao M, et al. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc Natl Acad Sci. 2014;111:E4024–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duleu S, Vincendeau P, Courtois P, Semballa S, Lagroye I, Daulouède S, et al. Mouse strain susceptibility to trypanosome infection: an arginase-dependent effect. J Immunol. 2004;172:6298–303.

    Article  CAS  PubMed  Google Scholar 

  42. Abebe T, Hailu A, Woldeyes M, Mekonen W, Bilcha K, Cloke T, et al. Local increase of arginase activity in lesions of patients with cutaneous leishmaniasis in Ethiopia. PLoS Negl Trop Dis. 2012;6: e1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M, et al. Toll-like receptor–induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol. 2008;9:1399–406.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lerchenmüller C, Rabolli CP, Yeri A, Kitchen R, Salvador AM, Liu LX, et al. CITED4 protects against adverse remodeling in response to physiological and pathological stress. Circ Res. 2020;127:631–46.

    PubMed  PubMed Central  Google Scholar 

  45. Lee H, Park S, Kong G, Kwon SH, Park J, Park J, et al. Phosphodiesterase 11 A (PDE11A), a potential biomarker for glioblastoma. Toxicol Res. 2022;38:409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. You H, Lin H, Zhang Z. CKS2 in human cancers: Clinical roles and current perspectives (Review). Mol Clin Oncol. 2015;3:459–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu H, Ma G, Mu F, Ning B, Li H, Wang N. STAT3 partly inhibits cell proliferation via direct negative regulation of FST gene expression. Front Genet. 2021;12:2.

    Google Scholar 

  48. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13:816–25.

    Article  CAS  PubMed  Google Scholar 

  50. Margalit L, Strauss C, Tal A, Schlesinger S. Trim24 and Trim33 play a role in epigenetic silencing of retroviruses in embryonic stem cells. Viruses. 2020;12:1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Chun Guo, Jiajia Wang, Yanwei Li and Yingying Huang from the core facility platform of Zhejiang University School of Medicine for their technical support.

Funding

This work was supported in part by grants from the National Natural Science Foundation of China (31900638, 31970555, 32070630 and 32100477), the University-level scientific research project of Ningxia Medical University (XT2022006), the National Key R&D Project of China (2018YFA0800102) and the Zhejiang Innovation Team Grant (2020R01006).

Author information

Authors and Affiliations

Authors

Contributions

YG, JZ and ZH designed the research. ZH, YF, YC, HF and YT performed the experiments. JY performed the analysis of RNA-seq. ZH, JZ and YG wrote the manuscript. JZ and YG supervised the project.

Corresponding authors

Correspondence to Ying Gu or Jiawei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethics approval

All mouse experiments were approved by the Institutional Animal Care and Use Committee and were in strict accordance with good animal practice as defined by the Zhejiang University Laboratory Animal Center (AP CODE: ZJU20220255).

Consent for publication

All authors agree to publish this article.

Additional information

Responsible Editor: Mauro Teixeira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Z., Fu, Y., Chen, Y. et al. Loss of TRIM24 promotes IL-10 expression via CBP/p300-dependent IFNβ1 transcription during macrophage activation. Inflamm. Res. 72, 1441–1452 (2023). https://doi.org/10.1007/s00011-023-01751-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01751-x

Keywords

Navigation