Skip to main content

Advertisement

Log in

Paradoxical expression of NRP1 in decidual stromal and immune cells reveals a novel inflammation balancing mechanism during early pregnancy

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

To investigate the balancing mechanisms between decidualization-associated inflammation and pregnancy-related immunotolerance.

Material or subjects

Decidual samples from women with normal pregnancy (n = 58) or unexplained spontaneous miscarriage (n = 13), peripheral blood from normal pregnancy and endometria from non-pregnancy (n = 10) were collected. Primary endometrial stromal cells (ESCs), decidual stromal cells (DSCs), decidual immune cells (DICs) and peripheral blood mononuclear cells (PBMCs) were isolated.

Treatment

The plasmid carrying neuropilin-1 (NRP1) gene was transfected into ESC for overexpression. To induce decidualization in vitro, ESCs were treated with a combination of 10 nM estradiol, 100 nM progesterone and 0.5 mM cAMP. Anti-Sema3a and anti-NRP1 neutralizing antibodies were applied to block the ligand–receptor interactions.

Methods

RNA-seq analysis was performed to identify differentially expressed genes in DSCs and DICs, and NRP1 expression was verified by Western blotting and flow cytometry. The secretion of inflammatory mediators was measured using a multifactor cytometric bead array. The effects of Sema3a-NRP1 pathway on DICs were determined by flow cytometry. Statistical differences between groups were compared using the T test and one way or two-way ANOVA.

Results

Combined with five RNA-seq datasets, NRP1 was the only immune checkpoint changing oppositely between DSCs and DICs. The decreased expression of NRP1 in DSCs allowed intrinsic inflammatory responses required for decidualization, while its increased expression in DICs enhanced tolerant phenotypes beneficial to pregnancy maintenance. DSC-secreted Sema3a promoted immunosuppression in DICs via NRP1 binding. In women with miscarriage, NRP1 was abnormally elevated in DSCs but diminished in decidual macrophages and NK cells.

Conclusion

NRP1 is a multifunctional controller that balances the inflammatory states of DSCs and DICs in gravid uterus. Abnormal expression of NRP1 is implicated in miscarriage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. Further inquiries can be directed to the corresponding author on reasonable request.

References

  1. Larsen EC, Christiansen OB, Kolte AM, Macklon N. New insights into mechanisms behind miscarriage. BMC Med. 2013;11:154. https://doi.org/10.1186/1741-7015-11-154.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Quenby S, Gallos ID, Dhillon-Smith RK, Podesek M, Stephenson MD, Fisher J, et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet (London, England). 2021;397(10285):1658–67. https://doi.org/10.1016/S0140-6736(21)00682-6.

    Article  CAS  PubMed  Google Scholar 

  3. Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol. 2019. https://doi.org/10.1126/sciimmunol.aat6114.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–53. https://doi.org/10.1038/s41586-018-0698-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ng S-W, Norwitz GA, Pavlicev M, Tilburgs T, Simón C, Norwitz ER. Endometrial decidualization: the primary driver of pregnancy health. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21114092.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35(6):851–905. https://doi.org/10.1210/er.2014-1045.

    Article  CAS  PubMed  Google Scholar 

  7. Murakami K, Kuroda K, Brosens JJ. Perturbation of endometrial decidualization. In: Treatment strategy for unexplained infertility and recurrent miscarriage. Singapore: Springer; 2018. p. 105–14.

    Chapter  Google Scholar 

  8. Zhang T, Zhu W, Zhao Y, Cheung WC, Liu Y, Chen X, et al. Early transient suppression of immune checkpoint proteins T-cell immunoglobulin mucin-3 and programmed cell death-1 in peripheral blood lymphocytes after blastocyst transfer is associated with successful implantation. Fertil Steril. 2020;114(2):426–35. https://doi.org/10.1016/j.fertnstert.2019.12.022.

    Article  CAS  PubMed  Google Scholar 

  9. Quenby S. Implantation involves an initial pro-inflammatory response. Fertil Steril. 2020;114(2):288–9. https://doi.org/10.1016/j.fertnstert.2020.05.039.

    Article  PubMed  Google Scholar 

  10. Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013;31(1):387–411. https://doi.org/10.1146/annurev-immunol-032712-100003.

    Article  CAS  PubMed  Google Scholar 

  11. Nadeau-Vallée M, Obari D, Palacios J, Brien M-È, Duval C, Chemtob S, et al. Sterile inflammation and pregnancy complications: a review. Reproduction (Cambridge, England). 2016;152(6):R277–92.

    Article  PubMed  Google Scholar 

  12. Zhao S-J, Muyayalo KP, Luo J, Huang D, Mor G, Liao A-H. Next generation of immune checkpoint molecules in maternal-fetal immunity. Immunol Rev. 2022;308(1):40–54. https://doi.org/10.1111/imr.13073.

    Article  CAS  PubMed  Google Scholar 

  13. Wang S, Zhu X, Xu Y, Zhang D, Li Y, Tao Y, et al. Programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) regulate CD4+ T cells to induce Type 2 helper T cell (Th2) bias at the maternal-fetal interface. Human Reprod (Oxford, England). 2016;31(4):700–11. https://doi.org/10.1093/humrep/dew019.

    Article  CAS  Google Scholar 

  14. Li Y, Zhang J, Zhang D, Hong X, Tao Y, Wang S, et al. Tim-3 signaling in peripheral NK cells promotes maternal-fetal immune tolerance and alleviates pregnancy loss. Sci Signal. 2017. https://doi.org/10.1126/scisignal.aah4323.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang S, Sun F, Li M, Qian J, Chen C, Wang M, et al. The appropriate frequency and function of decidual Tim-3CTLA-4CD8 T cells are important in maintaining normal pregnancy. Cell Death Dis. 2019;10(6):407. https://doi.org/10.1038/s41419-019-1642-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li M, Sun F, Qian J, Chen L, Li D, Wang S, et al. Tim-3/CTLA-4 pathways regulate decidual immune cells-extravillous trophoblasts interaction by IL-4 and IL-10. FASEB J. 2021;35(8): e21754. https://doi.org/10.1096/fj.202100142R.

    Article  CAS  PubMed  Google Scholar 

  17. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30(8):660–9. https://doi.org/10.1038/s41422-020-0343-4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mohamed Khosroshahi L, Parhizkar F, Kachalaki S, Aghebati-Maleki A, Aghebati-Maleki L. Immune checkpoints and reproductive immunology: pioneers in the future therapy of infertility related Disorders? Int Immunopharmacol. 2021;99:1079. https://doi.org/10.1016/j.intimp.2021.107935.

    Article  CAS  Google Scholar 

  19. Thompson KE, Danberry TL, Bunch RT, Graziano MJ, McNerney ME. Allogeneic murine pregnancy models for assessing the developmental effects of immune-stimulating antibodies: challenges in reproducibility. Birth Defects Res. 2019;111(16):1178–91. https://doi.org/10.1002/bdr2.1542.

    Article  CAS  PubMed  Google Scholar 

  20. Wang S, Chen C, Li M, Qian J, Sun F, Li Y, et al. Blockade of CTLA-4 and Tim-3 pathways induces fetal loss with altered cytokine profiles by decidual CD4T cells. Cell Death Dis. 2019;10(1):15. https://doi.org/10.1038/s41419-018-1251-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang S, Cao C, Piao H, Li Y, Tao Y, Zhang X, et al. Tim-3 protects decidual stromal cells from toll-like receptor-mediated apoptosis and inflammatory reactions and promotes Th2 bias at the maternal-fetal interface. Sci Rep. 2015;5:9013. https://doi.org/10.1038/srep09013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu W, Cai R, Ma Z, Li T, Lei C, Zhao J, et al. TIGIT-Fc as a potential therapeutic agent for fetomaternal tolerance. Front Immunol. 2021;12:649135. https://doi.org/10.3389/fimmu.2021.649135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olivares EG, Montes MJ, Oliver C, Galindo JA, Ruiz C. Cultured human decidual stromal cells express B7–1 (CD80) and B7–2 (CD86) and stimulate allogeneic T cells. Biol Reprod. 1997;57(3):609–15.

    Article  CAS  PubMed  Google Scholar 

  24. Nagamatsu T, Schust DJ, Sugimoto J, Barrier BF. Human decidual stromal cells suppress cytokine secretion by allogenic CD4+ T cells via PD-1 ligand interactions. Hum Reprod (Oxford, England). 2009;24(12):3160–71. https://doi.org/10.1093/humrep/dep308.

    Article  CAS  Google Scholar 

  25. Tao Y, Li Y-H, Zhang D, Xu L, Chen J-J, Sang Y-F, et al. Decidual CXCR4 CD56 NK cells as a novel NK subset in maternal-foetal immune tolerance to alleviate early pregnancy failure. Clin Transl Med. 2021;11(10): e540. https://doi.org/10.1002/ctm2.540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lv S, Liu M, Xu L, Zhang C. Downregulation of decidual SKP2 is associated with human recurrent miscarriage. Reprod Biol Endocrinol. 2021;19(1):88. https://doi.org/10.1186/s12958-021-00775-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu L, Li YH, Zhao WJ, Sang YF, Chen JJ, Li DJ, et al. RhoB promotes endometrial stromal cells decidualization via semaphorin3A/plexinA4 signaling in early pregnancy. Endocrinology. 2022. https://doi.org/10.1210/endocr/bqac134.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roy S, Bag AK, Singh RK, Talmadge JE, Batra SK, Datta K. Multifaceted role of neuropilins in the immune system: potential targets for immunotherapy. Front Immunol. 2017;8:1228. https://doi.org/10.3389/fimmu.2017.01228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang SC, Li YH, Piao HL, Hong XW, Zhang D, Xu YY, et al. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy. Cell Death Dis. 2015;6: e1738. https://doi.org/10.1038/cddis.2015.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99. https://doi.org/10.1038/nri3862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nancy P, Tagliani E, Tay C-S, Asp P, Levy DE, Erlebacher A. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science (New York, NY). 2012;336(6086):1317–21. https://doi.org/10.1126/science.1220030.

    Article  CAS  Google Scholar 

  32. Du L, Deng W, Zeng S, Xu P, Huang L, Liang Y, et al. Single-cell transcriptome analysis reveals defective decidua stromal niche attributes to recurrent spontaneous abortion. Cell Prolif. 2021. https://doi.org/10.1111/cpr.13125.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang X, Wei H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front Immunol. 2021;12:728291. https://doi.org/10.3389/fimmu.2021.728291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Piccinni M-P, Raghupathy R, Saito S, Szekeres-Bartho J. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front Immunol. 2021;12:717808. https://doi.org/10.3389/fimmu.2021.717808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T Helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front Immunol. 2020;11:2025. https://doi.org/10.3389/fimmu.2020.02025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Delgoffe GM, Woo S-R, Turnis ME, Gravano DM, Guy C, Overacre AE, et al. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature. 2013;501(7466):252–6. https://doi.org/10.1038/nature12428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mekinian A, Cohen J, Alijotas-Reig J, Carbillon L, Nicaise-Roland P, Kayem G, et al. Unexplained recurrent miscarriage and recurrent implantation failure: is there a place for immunomodulation? Am J Reprod Immunol (New York, NY : 1989). 2016. https://doi.org/10.1111/aji.12493.

    Article  Google Scholar 

  38. Chavan AR, Griffith OW, Wagner GP. The inflammation paradox in the evolution of mammalian pregnancy: turning a foe into a friend. Curr Opin Genet Dev. 2017;47:24–32. https://doi.org/10.1016/j.gde.2017.08.004.

    Article  CAS  PubMed  Google Scholar 

  39. Kitsukawa T, Shimono A, Kawakami A, Kondoh H, Fujisawa H. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development. 1995;121(12):4309–18.

    Article  CAS  PubMed  Google Scholar 

  40. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, et al. A requirement for neuropilin-1 in embryonic vessel formation. Development. 1999;126(21):4895–902.

    Article  CAS  PubMed  Google Scholar 

  41. Yuan L, Moyon D, Pardanaud L, Bréant C, Karkkainen MJ, Alitalo K, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development. 2002;129(20):4797–806.

    Article  CAS  PubMed  Google Scholar 

  42. Huang Z, Huang S, Song T, Yin Y, Tan C. Placental angiogenesis in mammals: a review of the regulatory effects of signaling pathways and functional nutrients. Adv Nutr. 2021;12(6):2415–34. https://doi.org/10.1093/advances/nmab070.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Arad A, Nammouz S, Nov Y, Ohel G, Bejar J, Vadasz Z. The expression of neuropilin-1 in human placentas from normal and preeclamptic pregnancies. Int J Gynecol Pathol. 2017;36(1):42–9. https://doi.org/10.1097/PGP.0000000000000283.

    Article  CAS  PubMed  Google Scholar 

  44. Baston-Buest DM, Porn AC, Schanz A, Kruessel J-S, Janni W, Hess AP. Expression of the vascular endothelial growth factor receptor neuropilin-1 at the human embryo-maternal interface. Eur J Obstet Gynecol Reprod Biol. 2011;154(2):151–6. https://doi.org/10.1016/j.ejogrb.2010.10.018.

    Article  CAS  PubMed  Google Scholar 

  45. Maulik D, De A, Ragolia L, Evans J, Grigoryev D, Lankachandra K, et al. Down-regulation of placental neuropilin-1 in fetal growth restriction. Am J Obstet Gynecol. 2016;214(2):2791–9. https://doi.org/10.1016/j.ajog.2015.09.068.

    Article  CAS  Google Scholar 

  46. Yang X, Chen D, He B, Cheng W. NRP1 and MMP9 are dual targets of RNA-binding protein QKI5 to alter VEGF-R/ NRP1 signalling in trophoblasts in preeclampsia. J Cell Mol Med. 2021;25(12):5655–70. https://doi.org/10.1111/jcmm.16580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu X, Yang XY, He BW, Yang WJ, Cheng WW. Placental NRP1 and VEGF expression in pre-eclamptic women and in a homocysteine-treated mouse model of pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2016;196:69–75. https://doi.org/10.1016/j.ejogrb.2015.11.017.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou Y, Gormley MJ, Hunkapiller NM, Kapidzic M, Stolyarov Y, Feng V, et al. Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. J Clin Investig. 2013;123(7):2862–72. https://doi.org/10.1172/JCI66966.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chuckran CA, Liu C, Bruno TC, Workman CJ, Vignali DA. Neuropilin-1: a checkpoint target with unique implications for cancer immunology and immunotherapy. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-000967.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Weiss JM, Bilate AM, Gobert M, Ding Y, de Curotto Lafaille MA, Parkhurst CN, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med. 2012;209(10):1723–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jackson SR, Berrien-Elliott M, Yuan J, Hsueh EC, Teague RM. Neuropilin-1 expression is induced on tolerant self-reactive CD8+ T cells but is dispensable for the tolerant phenotype. PLoS ONE. 2014;9(10): e110707. https://doi.org/10.1371/journal.pone.0110707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sarris M, Andersen KG, Randow F, Mayr L, Betz AG. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity. 2008;28(3):402–13. https://doi.org/10.1016/j.immuni.2008.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miyauchi JT, Caponegro MD, Chen D, Choi MK, Li M, Tsirka SE. Deletion of neuropilin 1 from microglia or bone marrow-derived macrophages slows glioma progression. Can Res. 2018;78(3):685–94. https://doi.org/10.1158/0008-5472.CAN-17-1435.

    Article  CAS  Google Scholar 

  54. Wallerius M, Wallmann T, Bartish M, Östling J, Mezheyeuski A, Tobin NP, et al. Guidance molecule SEMA3A restricts tumor growth by differentially regulating the proliferation of tumor-associated macrophages. Can Res. 2016;76(11):3166–78. https://doi.org/10.1158/0008-5472.CAN-15-2596.

    Article  CAS  Google Scholar 

  55. Grasso E, Gori S, Soczewski E, Fernández L, Gallino L, Vota D, et al. Impact of the reticular stress and unfolded protein response on the inflammatory response in endometrial stromal cells. Sci Rep. 2018;8(1):12274. https://doi.org/10.1038/s41598-018-29779-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221:80–7. https://doi.org/10.1111/j.1749-6632.2010.05938.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Plaks V, Birnberg T, Berkutzki T, Sela S, BenYashar A, Kalchenko V, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Investig. 2008;118(12):3954–65. https://doi.org/10.1172/JCI36682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barash A, Dekel N, Fieldust S, Segal I, Schechtman E, Granot I. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril. 2003;79(6):1317–22.

    Article  PubMed  Google Scholar 

  59. Zhu Y-Y, Wu Y, Chen S-T, Kang J-W, Pan J-M, Liu X-Z, et al. Synthesized monosodium urate crystal enhances endometrium decidualization via sterile inflammation during pregnancy. Front Cell Dev Biol. 2021;9:702590. https://doi.org/10.3389/fcell.2021.702590.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Salker MS, Nautiyal J, Steel JH, Webster Z, Sućurović S, Nicou M, et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS ONE. 2012;7(12): e52252. https://doi.org/10.1371/journal.pone.0052252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gu X-W, Chen Z-C, Yang Z-S, Yang Y, Yan Y-P, Liu Y-F, et al. Blastocyst-induced ATP release from luminal epithelial cells initiates decidualization through the P2Y2 receptor in mice. Sci Signal. 2020. https://doi.org/10.1126/scisignal.aba3396.

    Article  PubMed  Google Scholar 

  62. Chavan AR, Griffith OW, Stadtmauer DJ, Maziarz J, Pavlicev M, Fishman R, et al. Evolution of embryo implantation was enabled by the origin of decidual stromal cells in eutherian mammals. Mol Biol Evol. 2021;38(3):1060–74. https://doi.org/10.1093/molbev/msaa274.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients who participated in our study. We are also grateful to all the members in our laboratory for their help.

Funding

This work was supported by the grants from the National Natural Science Foundation of China (82271713, 31970859, 81630036, 91542116, 31570920, 32070915, 31900663), National Science and Technology Program during the 13th Five-year Plan Period (2021YFE0206500), International cooperation project between Macao and Shanghai Municipal Commission of science and technology (20410760300), Strategic Collaborative Research Program of the Ferring Institute of Reproductive Medicine (FIRMA200504).

Author information

Authors and Affiliations

Authors

Contributions

JC and YL collected human samples, performed experiments, analyzed the data and wrote the manuscript. LX and YS generated figures, searched for literature and revised the manuscript. DL conceived the whole research and monitored the execution of this study strictly. MD designed the experiments, supplemented key materials, conducted data interpretation and revised the manuscript.

Corresponding authors

Correspondence to Dajin Li or Meirong Du.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study was approved by the Research Ethics Committee of the Obstetrics and Gynecology Hospital, Fudan university. Written informed consents were obtained from all subjects for the collection and study of their tissue or blood samples.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, Y., Xu, L. et al. Paradoxical expression of NRP1 in decidual stromal and immune cells reveals a novel inflammation balancing mechanism during early pregnancy. Inflamm. Res. 72, 1341–1357 (2023). https://doi.org/10.1007/s00011-023-01734-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01734-y

Keywords

Navigation