Skip to main content
Log in

Amnion-derived serum amyloid A1 participates in sterile inflammation of fetal membranes at parturition

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

Sterile inflammation of fetal membranes is an indispensable event of normal parturition. However, triggers of sterile inflammation are not fully resolved. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver. Fetal membranes can also synthesize SAA1 but its functions are not well defined. Given the role of SAA1 in the acute phase response to inflammation, we postulated that SAA1 synthesized in the fetal membranes may be a trigger of local inflammation at parturition.

Methods

The changes of SAA1 abundance in parturition were studied in the amnion of human fetal membranes. The role of SAA1 in chemokine expression and leukocyte chemotaxis was examined in cultured human amnion tissue explants as well as primary human amnion fibroblasts. The effects of SAA1 on monocytes, macrophages and dendritic cells were investigated in cells derived from a human leukemia monocytic cell line (THP-1).

Results

SAA1 synthesis increased significantly in human amnion at parturition. SAA1 evoked multiple chemotaxis pathways in human amnion fibroblasts along with upregulation of a series of chemokines via both toll-like receptor 4 (TLR4) and formyl peptide receptor 2 (FPR2). Moreover, SAA1-conditioned medium of cultured amnion fibroblasts was capable of chemoattracting virtually all types of mononuclear leukocytes, particularly monocytes and dendritic cells, which reconciled with the chemotactic activity of conditioned medium of cultured amnion tissue explants collected from spontaneous labor. Furthermore, SAA1 could induce the expression of genes associated with inflammation and extracellular matrix remodeling in monocytes, macrophages and dendritic cells derived from THP-1.

Conclusions

SAA1 is a trigger of sterile inflammation of the fetal membranes at parturition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The RNA-Seq data of the amnion tissue obtained from TL and TNL and amnion fibroblasts with or without SAA1 treatment have been submitted to the GEO data repository (GSE166453 and GSE217734).

References

  1. Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF 3rd, Petraglia F. Inflammation and pregnancy. Reprod Sci. 2009;16(2):206–15. https://doi.org/10.1177/1933719108329095.

    Article  CAS  PubMed  Google Scholar 

  2. Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11(5):317–26. https://doi.org/10.1016/j.siny.2006.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, et al. The preterm parturition syndrome. BJOG. 2006;113:17–42. https://doi.org/10.1111/j.1471-0528.2006.01120.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bukowski R, Sadovsky Y, Goodarzi H, Zhang H, Biggio JR, Varner M, et al. Onset of human preterm and term birth is related to unique inflammatory transcriptome profiles at the maternal fetal interface. PeerJ. 2017;5:e3685.https://doi.org/10.7717/peerj.3685

  5. Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. 2010;28:321–42. https://doi.org/10.1146/annurev-immunol-030409-101311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shen H, Kreisel D, Goldstein DR. Processes of sterile inflammation. J Immunol. 2013;191(6):2857–63. https://doi.org/10.4049/jimmunol.1301539.

    Article  CAS  PubMed  Google Scholar 

  7. Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition–a review. Placenta. 2003;24:S33-46. https://doi.org/10.1053/plac.2002.0948.

    Article  CAS  PubMed  Google Scholar 

  8. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. The Lancet. 2012;379(9832):2162–72. https://doi.org/10.1016/s0140-6736(12)60820-4.

    Article  Google Scholar 

  9. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. The Lancet. 2016;388(10063):3027–35. https://doi.org/10.1016/s0140-6736(16)31593-8.

    Article  Google Scholar 

  10. Romero R, Miranda J, Chaiworapongsa T, Korzeniewski SJ, Chaemsaithong P, Gotsch F, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458–74. https://doi.org/10.1111/aji.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marcellin L, Schmitz T, Messaoudene M, Chader D, Parizot C, Jacques S, et al. Immune modifications in fetal membranes overlying the cervix precede parturition in humans. J Immunol. 2017;198(3):1345–56. https://doi.org/10.4049/jimmunol.1601482.

    Article  CAS  PubMed  Google Scholar 

  12. Menon R, Nicolau NN, Bredson S, Polettini J. Fetal membranes: Potential Source of Preterm Birth Biomarkers. General Methods in Biomarker Research and their Applications 2014. p. 1–35

  13. Czikk MJ, McCarthy FP, Murphy KE. Chorioamnionitis: from pathogenesis to treatment. Clin Microbiol Infect. 2011;17(9):1304–11. https://doi.org/10.1111/j.1469-0691.2011.03574.x.

    Article  CAS  PubMed  Google Scholar 

  14. Menon R, Mesiano S, Taylor RN. Programmed fetal membrane senescence and exosome-mediated signaling: a mechanism associated with timing of human parturition. Front Endocrinol (Lausanne). 2017;8:196. https://doi.org/10.3389/fendo.2017.00196.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Menon R, Behnia F, Polettini J, Saade GR, Campisi J, Velarde M. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging (Albany NY). 2016;8(2):216–30.https://doi.org/10.18632/aging.100891

  16. Bredeson S, Papaconstantinou J, Deford JH, Kechichian T, Syed TA, Saade GR, et al. HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS One. 2014;9(12):e113799. https://doi.org/10.1371/journal.pone.0113799

  17. Sun L, Ye RD. Serum amyloid A1: Structure, function and gene polymorphism. Gene. 2016;583(1):48–57. https://doi.org/10.1016/j.gene.2016.02.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maury CP, Ehnholm C, Lukka M. Serum amyloid A protein (SAA) subtypes in acute and chronic inflammatory conditions. Ann Rheum Dis. 1985;44(10):711–5. https://doi.org/10.1136/ard.44.10.711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye RD, Sun L. Emerging functions of serum amyloid A in inflammation. J Leukoc Biol. 2015;98(6):923–9. https://doi.org/10.1189/jlb.3VMR0315-080R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin YK, Zhu P, Wang WS, Sun K. Serum amyloid A, a host-derived DAMP in pregnancy? Front Immunol. 2022;13:978929.https://doi.org/10.3389/fimmu.2022.978929

  21. Sack GH Jr. Serum amyloid A: a review. Mol Med. 2018;24(1):46. https://doi.org/10.1186/s10020-018-0047-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smole U, Gour N, Phelan J, Hofer G, Kohler C, Kratzer B, et al. Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nat Immunol. 2020;21(7):756–65. https://doi.org/10.1038/s41590-020-0698-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Badolato R, Wang JM, Murphy WJ, Lloyd AR, Michiel DF, Bausserman LL, et al. Serum amyloid A is a chemoattractant: induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J Exp Med. 1994;180(1):203–9. https://doi.org/10.1084/jem.180.1.203.

    Article  CAS  PubMed  Google Scholar 

  24. Urieli-Shoval S, Cohen P, Eisenberg S, Matzner Y. Widespread expression of serum amyloid A in histologically normal human tissues. Predominant localization to the epithelium. J Histochem Cytochem. 1998;46(12):1377–84. https://doi.org/10.1177/002215549804601206.

    Article  CAS  PubMed  Google Scholar 

  25. Sandri S, Urban Borbely A, Fernandes I, de Oliveira EM, Knebel FH, Ruano R, et al. Serum amyloid A in the placenta and its role in trophoblast invasion. PLoS One. 2014;9(3):e90881. DOI: https://doi.org/10.1371/journal.pone.00908811

  26. Li W, Wang W, Zuo R, Liu C, Shu Q, Ying H, et al. Induction of pro-inflammatory genes by serum amyloid A1 in human amnion fibroblasts. Sci Rep. 2017;7(1):693. https://doi.org/10.1038/s41598-017-00782-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gan XW, Wang WS, Lu JW, Ling LJ, Zhou Q, Zhang HJ, et al. De novo synthesis of SAA1 in the placenta participates in parturition. Front Immunol. 2020;11:1038. https://doi.org/10.3389/fimmu.2020.01038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang Y, Pin L, Shi W, Huang Q, Wang L, Liu H. SAA1 regulates pro-labour mediators in term labour by activating YAP pathway. Mol Cell Biochem. 2021;476(7):2791–801. https://doi.org/10.1007/s11010-021-04125-1.

    Article  CAS  PubMed  Google Scholar 

  29. Jutila MA. Leukocyte traffic to sites of inflammation. APMIS. 1992;100(3):191–201. https://doi.org/10.1111/j.1699-0463.1992.tb00861.x.

    Article  CAS  PubMed  Google Scholar 

  30. Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694–707. https://doi.org/10.1016/j.immuni.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Chen ZJ, Myatt L, Sun K. 11beta-HSD1 in human fetal membranes as a potential therapeutic target for preterm birth. Endocr Rev. 2018;39(3):241–60. https://doi.org/10.1210/er.2017-00188.

    Article  PubMed  Google Scholar 

  32. Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update. 2016;22(5):535–60. https://doi.org/10.1093/humupd/dmw022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parry S, Strauss JF 3rd. Premature rupture of the fetal membranes. N Engl J Med. 1998;338(10):663–70. https://doi.org/10.1056/NEJM199803053381006.

    Article  CAS  PubMed  Google Scholar 

  34. Chen M, Zhou H, Cheng N, Qian F, Ye RD. Serum amyloid A1 isoforms display different efficacy at Toll-like receptor 2 and formyl peptide receptor 2. Immunobiology. 2014;219(12):916–23. https://doi.org/10.1016/j.imbio.2014.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ebert R, Benisch P, Krug M, Zeck S, Meissner-Weigl J, Steinert A, et al. Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells. Stem Cell Res. 2015;15(1):231–9. https://doi.org/10.1016/j.scr.2015.06.008.

    Article  CAS  PubMed  Google Scholar 

  36. Dudley D, Hunter C, Mitchell M, Varner M. Elevations of amniotic fluid macrophage inflammatory protein-1α concentrations in women during term and preterm labor. Obstetrics Gynecology. 1996;87(1):94–8. https://doi.org/10.1016/0029-7844(95)00366-5.

    Article  CAS  PubMed  Google Scholar 

  37. Mittal P, Romero R, Kusanovic JP, Edwin SS, Gotsch F, Mazaki-Tovi S, et al. CXCL6 (granulocyte chemotactic protein-2): a novel chemokine involved in the innate immune response of the amniotic cavity. Am J Reprod Immunol. 2008;60(3):246–57. https://doi.org/10.1111/j.1600-0897.2008.00620.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamill N, Romero R, Gotsch F, Kusanovic JP, Edwin S, Erez O, et al. Exodus-1 (CCL20): evidence for the participation of this chemokine in spontaneous labor at term, preterm labor, and intrauterine infection. J Perinat Med. 2008;36(3):217–27. https://doi.org/10.1515/JPM.2008.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang YW, Wang WS, Wang LY, Bao YR, Lu JW, Lu Y, et al. Extracellular matrix remodeling effects of serum amyloid A1 in the human amnion: Implications for fetal membrane rupture. Am J Reprod Immunol. 2019;81(1):e13073.https://doi.org/10.1111/aji.13073

  40. Wang WS, Li WJ, Wang YW, Wang LY, Mi YB, Lu JW, et al. Involvement of serum amyloid A1 in the rupture of fetal membranes through induction of collagen I degradation. Clin Sci (Lond). 2019;133(3):515–30. https://doi.org/10.1042/CS20180950.

    Article  CAS  PubMed  Google Scholar 

  41. Lu Y, Zhou Q, Lu JW, Wang WS, Sun K. Involvement of STAT3 in the synergistic induction of 11beta-HSD1 by SAA1 and cortisol in human amnion fibroblasts. Am J Reprod Immunol. 2019;82(2):e13150.https://doi.org/10.1111/aji.13150

  42. Lu Y, Wang WS, Lin YK, Lu JW, Li WJ, Zhang CY, et al. Enhancement of cortisol-induced SAA1 transcription by SAA1 in the human amnion. J Mol Endocrinol. 2019;62(4):149–58. https://doi.org/10.1530/JME-18-0263.

    Article  CAS  PubMed  Google Scholar 

  43. Wang WS, Guo CM, Sun K. Cortisol regeneration in the fetal membranes, a coincidental or requisite event in human parturition? Front Physiol. 2020;11:462. https://doi.org/10.3389/fphys.2020.00462.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Houser BL. Decidual macrophages and their roles at the maternal-fetal interface. Yale J Biol Med. 2012;85(1):105–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gomez-Lopez N, Vadillo-Perez L, Nessim S, Olson DM, Vadillo-Ortega F. Choriodecidua and amnion exhibit selective leukocyte chemotaxis during term human labor. Am J Obstet Gynecol. 2011;204(4):364 e9–16.https://doi.org/10.1016/j.ajog.2010.11.010

  46. Wang WS, Lin YK, Zhang F, Lei WJ, Pan F, Zhu YN, et al. Single cell transcriptomic analysis of human amnion identifies cell-specific signatures associated with membrane rupture and parturition. Cell Biosci. 2022;12(1):64. https://doi.org/10.1186/s13578-022-00797-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spiering MJ. Primer on the Immune System. Alcohol Res. 2015;37(2):171–5.

    PubMed  PubMed Central  Google Scholar 

  48. Palucka K, Banchereau J. Dendritic cells: a link between innate and adaptive immunity. J Clin Immunol. 1999;19(1):12–25. https://doi.org/10.1023/a:1020558317162.

    Article  CAS  PubMed  Google Scholar 

  49. Wei R, Lai N, Zhao L, Zhang Z, Zhu X, Guo Q, et al. Dendritic cells in pregnancy and pregnancy-associated diseases. Biomed Pharmacother. 2021;133:110921.https://doi.org/10.1016/j.biopha.2020.110921

  50. Kwiatek M, Geca T, Krzyzanowski A, Malec A, Kwasniewska A. Peripheral Dendritic Cells and CD4+CD25+Foxp3+ Regulatory T Cells in the First Trimester of Normal Pregnancy and in Women with Recurrent Miscarriage. PLoS One. 2015;10(5):e0124747.https://doi.org/10.1371/journal.pone.0124747

  51. Askelund K, Liddell HS, Zanderigo AM, Fernando NS, Khong TY, Stone PR, et al. CD83+dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta. 2004;25(2–3):140–5. https://doi.org/10.1016/s0143-4004(03)00182-6.

    Article  CAS  PubMed  Google Scholar 

  52. Bizargity P, Del Rio R, Phillippe M, Teuscher C, Bonney EA. Resistance to lipopolysaccharide-induced preterm delivery mediated by regulatory T cell function in mice. Biol Reprod. 2009;80(5):874–81. https://doi.org/10.1095/biolreprod.108.074294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Buck M, Berghmans N, Portner N, Vanbrabant L, Cockx M, Struyf S, et al. Serum amyloid A1alpha induces paracrine IL-8/CXCL8 via TLR2 and directly synergizes with this chemokine via CXCR2 and formyl peptide receptor 2 to recruit neutrophils. J Leukoc Biol. 2015;98(6):1049–60. https://doi.org/10.1189/jlb.3A0315-085R.

    Article  CAS  PubMed  Google Scholar 

  54. Badolato R, Johnston JA, Wang JM, McVicar D, Xu LL, Oppenheim JJ, et al. Serum amyloid A induces calcium mobilization and chemotaxis of human monocytes by activating a pertussis toxin-sensitive signaling pathway. J Immunol. 1995;155(8):4004–10.

    Article  CAS  PubMed  Google Scholar 

  55. Xu L, Badolato R, Murphy WJ, Longo DL, Anver M, Hale S, et al. A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J Immunol. 1995;155(3):1184–90.

    Article  CAS  PubMed  Google Scholar 

  56. Firmal P, Shah VK, Chattopadhyay S. Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders. Front Immunol. 2020;11:807. https://doi.org/10.3389/fimmu.2020.00807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roh JS, Sohn DH. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018;18(4):e27.https://doi.org/10.4110/in.2018.18.e27

  58. Chen G, Wang X, Liao Q, Ge Y, Jiao H, Chen Q, et al. Structural basis for recognition of N-formyl peptides as pathogen-associated molecular patterns. Nat Commun. 2022;13(1):5232. https://doi.org/10.1038/s41467-022-32822-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang W, Guo C, Zhu P, Lu J, Li W, Liu C, et al. Phosphorylation of STAT3 mediates the induction of cyclooxygenase-2 by cortisol in the human amnion at parturition. Sci Signal. 2015;8(400):ra106.https://doi.org/10.1126/scisignal.aac6151

  60. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lu JW, Wang WS, Zhou Q, Ling LJ, Ying H, Sun Y, et al. C/EBPdelta drives key endocrine signals in the human amnion at parturition. Clin Transl Med. 2021;11(6):e416.https://doi.org/10.1002/ctm2.416

  63. Chanput W, Peters V, Wichers H. THP-1 and U937 Cells. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al., eds. The Impact of Food Bioactives on Health: in vitro and ex vivo models. Cham (CH): Springer, Copyright 2015, The Author(s). 2015. p. 147–59

  64. Berges C, Naujokat C, Tinapp S, Wieczorek H, Hoh A, Sadeghi M, et al. A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun. 2005;333(3):896–907. https://doi.org/10.1016/j.bbrc.2005.05.171.

    Article  CAS  PubMed  Google Scholar 

  65. Sapudom J, Alatoom A, Mohamed WKE, Garcia-Sabate A, McBain I, Nasser RA, et al. Dendritic cell immune potency on 2D and in 3D collagen matrices. Biomater Sci. 2020;8(18):5106–20. https://doi.org/10.1039/d0bm01141j.

    Article  CAS  PubMed  Google Scholar 

  66. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. https://doi.org/10.1016/j.immuni.2014.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bertani FR, Mozetic P, Fioramonti M, Iuliani M, Ribelli G, Pantano F, et al. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci Rep. 2017;7(1):8965. https://doi.org/10.1038/s41598-017-08121-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hammer GE, Ma A. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu Rev Immunol. 2013;31:743–91. https://doi.org/10.1146/annurev-immunol-020711-074929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Li-jun Ling and Lu-yao Wang for assistance with sample collection. This work was supported by National Natural Science Foundation of China (81830042, 82271717); National Key R & D Program of China (2022YFC2704602); and Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZLCX20210201).

Author information

Authors and Affiliations

Authors

Contributions

K. S. and W.-S. W. conceptualization; K. S. funding acquisition; Y.-K. L., F. Z., W.-J. L., X.-W. G., M.-D. L. and F. P. research investigation and methodology; Y.-K. L. and W.-S. W writing–original draft; K. S. writing–review and editing.

Corresponding authors

Correspondence to Wang-sheng Wang or Kang Sun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 481 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Yk., Zhang, F., Lei, Wj. et al. Amnion-derived serum amyloid A1 participates in sterile inflammation of fetal membranes at parturition. Inflamm. Res. 72, 797–812 (2023). https://doi.org/10.1007/s00011-023-01713-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01713-3

Keywords

Navigation