Skip to main content

Advertisement

Log in

Significance of glutathione peroxidase 4 and intracellular iron level in ovarian cancer cells—“utilization” of ferroptosis mechanism

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Ovarian cancer is the major cause of death in gynecologic diseases worldwide. Ferroptosis, a nonapoptotic form of cell death, is featured by accumulation of iron-based lipid peroxidation. The elevated iron level and malondialdehyde (MDA) in ovarian cancer cells suggest more vulnerable to ferroptosis, nevertheless, ferroptosis is not observed in ovarian cancer cells. Glutathione peroxidase 4 (GPX4) is a critical regulator of ferroptosis.

Methods

We determined whether GPX4 knockdown could induce ferroptosis to prevent cell proliferation in ovarian cancer. Human ovarian cancer cells and normal human ovarian epithelial cell line IOSE-80 were cultured and administrated with deferoxamine (DFO) or ferric ammonium citrate (FAC). GPX4 knockdown was established for investigating the functions of GPX4 in ovarian cancer cells and in tumor xenograft mice.

Results

A positively correlation was showed among the levels of GPX4, iron and cell proliferation. Chelation of intracellular iron by DFO disrupted intracellular iron level and was detrimental to ovarian cancer cell survival. FAC-induced elevation of intracellular iron inhibited proliferation, aggravated apoptosis, boosted inflammation and suppressed lipid peroxide reducibility in ovarian cancer cells. Knockdown of GPX4 had similar effects with FAC in ovarian cancer cells. Inhibition of GPX4 suppressed tumor growth, induced ferroptosis, accelerated cell apoptosis, reduced Fe3+ accumulation and suppressed lipid peroxide reducibility in tumor bearing mice.

Conclusion

We demonstrate the significance of GPX4 and intracellular iron level in ovarian cancer cells. Importantly, inhibition of GPX4 interferes with both intracellular iron homeostasis and lipid peroxide reducibility, inducing ferroptosis and exerting anti-cancer effect, which can be a potential effective strategy for ovarian cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

MDA:

Malondialdehyde

GPX4:

Glutathione peroxidase 4

DFO:

Deferoxamine

FAC:

Ferric ammonium citrate

TBA:

Thiobarbituric acid

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assays

BCA:

Bicinchoninic acid

SD:

Standard deviation

CSCs:

Cancer stem-like cells

ccRCC:

Clear-cell renal cell carcinomas

CCCs:

Clear-cell carcinomas

IL-6:

Interleukin 6

References

  1. Eisenhauer EA. Real-world evidence in the treatment of ovarian cancer. Ann Oncol. 2017;28(suppl_8):viii61–5.

    Article  CAS  Google Scholar 

  2. Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 2017;41:3–14.

    Article  Google Scholar 

  3. Devouassoux-Shisheboran M, Genestie C. Pathobiology of ovarian carcinomas. Chin J Cancer. 2015;34(1):50–5.

    Article  CAS  Google Scholar 

  4. Lucidi A, Chiantera V, Gallotta V, Ercoli A, Scambia G, Fagotti A. Role of robotic surgery in ovarian malignancy. Best Pract Res Clin Obstet Gynaecol. 2017;45:74–82.

    Article  CAS  Google Scholar 

  5. Fields EC, McGuire WP, Lin L, Temkin SM. Radiation treatment in women with ovarian cancer: past, present, and future. Front Oncol. 2017;7:177.

    Article  Google Scholar 

  6. Padmakumar S, Parayath N, Leslie F, Nair SV, Menon D, Amiji MM. Intraperitoneal chemotherapy for ovarian cancer using sustained-release implantable devices. Expert Opin Drug Deliv. 2018;15(5):481–94.

    Article  CAS  Google Scholar 

  7. Norouzi-Barough L, Sarookhani MR, Sharifi M, Moghbelinejad S, Jangjoo S, Salehi R. Molecular mechanisms of drug resistance in ovarian cancer. J Cell Physiol. 2018;233(6):4546–62.

    Article  CAS  Google Scholar 

  8. Tang M, Chen Z, Wu D, Chen L. Ferritinophagy/ferroptosis: Iron-related newcomers in human diseases. J Cell Physiol. 2018;233(12):9179–90.

    Article  CAS  Google Scholar 

  9. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X. Emerging strategies of cancer therapy based on ferroptosis. Adv Mater. 2018;30(12):e1704007.

    Article  Google Scholar 

  10. Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–52.

    Article  CAS  Google Scholar 

  11. Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G, et al. Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene. 2017;36(29):4089–99.

    Article  CAS  Google Scholar 

  12. Caglayan A, Katlan DC, Tuncer ZS, Yuce K, Sayal HB, Salman MC, et al. Impaired antioxidant enzyme functions with increased lipid peroxidation in epithelial ovarian cancer. IUBMB Life. 2017;69(10):802–13.

    Article  CAS  Google Scholar 

  13. Feng H, Stockwell BR. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol. 2018;16(5):e2006203.

    Article  Google Scholar 

  14. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–31.

    Article  CAS  Google Scholar 

  15. Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 2017;8:992.

    Article  Google Scholar 

  16. Wei Y, Lv H, Shaikh AB, Han W, Hou H, Zhang Z, et al. Directly targeting glutathione peroxidase 4 may be more effective than disrupting glutathione on ferroptosis-based cancer therapy. Biochim Biophys Acta Gen Subj. 2020;1864(4): 129539.

    Article  CAS  Google Scholar 

  17. Forciniti S, Greco L, Grizzi F, Malesci A, Laghi L. Iron metabolism in cancer progression. Int J Mol Sci. 2020;21(6):2257.

    Article  CAS  Google Scholar 

  18. Cheng M, Liu P, Xu LX. Iron promotes breast cancer cell migration via IL-6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL-6-rich inflammatory environment. J Inorg Biochem. 2020;210: 111159.

    Article  CAS  Google Scholar 

  19. Liu P, He K, Song H, Ma Z, Yin W, Xu LX. Deferoxamine-induced increase in the intracellular iron levels in highly aggressive breast cancer cells leads to increased cell migration by enhancing TNF-alpha-dependent NF-kappaB signaling and TGF-beta signaling. J Inorg Biochem. 2016;160:40–8.

    Article  CAS  Google Scholar 

  20. Zhang Y, Feng X, Zhang J, Chen M, Huang E, Chen X. Iron regulatory protein 2 is a suppressor of mutant p53 in tumorigenesis. Oncogene. 2019;38(35):6256–69.

    Article  CAS  Google Scholar 

  21. Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 2019;133:162–8.

    Article  CAS  Google Scholar 

  22. Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69(4):280–304.

    PubMed  Google Scholar 

  23. Narod S. Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol. 2016;13(4):255–61.

    Article  CAS  Google Scholar 

  24. Miess H, Dankworth B, Gouw AM, Rosenfeldt M, Schmitz W, Jiang M, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene. 2018;37(40):5435–50.

    Article  CAS  Google Scholar 

  25. Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM. Iron and cancer. Annu Rev Nutr. 2018;38:97–125.

    Article  CAS  Google Scholar 

  26. Schonberg DL, Miller TE, Wu Q, Flavahan WA, Das NK, Hale JS, et al. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell. 2015;28(4):441–55.

    Article  CAS  Google Scholar 

  27. Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano. 2018;12(11):11355–65.

    Article  CAS  Google Scholar 

  28. Bauckman KA, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 2013;4:e592.

    Article  CAS  Google Scholar 

  29. Bordini J, Morisi F, Cerruti F, Cascio P, Camaschella C, Ghia P, et al. Iron causes lipid oxidation and inhibits proteasome function in multiple myeloma cells: a proof of concept for novel combination therapies. Cancers (Basel). 2020;12(4):970.

    Article  CAS  Google Scholar 

  30. Chen C, Wang S, Liu P. Deferoxamine enhanced mitochondrial iron accumulation and promoted cell migration in triple-negative MDA-MB-231 breast cancer cells via a ROS-dependent mechanism. Int J Mol Sci. 2019;20(19):4952.

    Article  CAS  Google Scholar 

  31. Sato M, Kusumi R, Hamashima S, Kobayashi S, Sasaki S, Komiyama Y, et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci Rep. 2018;8(1):968.

    Article  Google Scholar 

  32. Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S, et al. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 2020;235(4):3425–37.

    Article  CAS  Google Scholar 

  33. Wang Y, Zhao G, Condello S, Huang H, Cardenas H, Tanner EJ, et al. Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 2021;81(2):384–99.

    Article  CAS  Google Scholar 

  34. Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 2019;10(1):1617.

    Article  Google Scholar 

  35. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551(7679):247–50.

    Article  CAS  Google Scholar 

  36. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2020;15548627:1–28.

    Google Scholar 

  37. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88.

    Article  Google Scholar 

  38. Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol. 2018;14(5):507–15.

    Article  CAS  Google Scholar 

  39. Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA, et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res. 2011;17(18):6083–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No.

Funding

The joint construction project of Henan Provincial Medical Science and Technology Tack Key Project in 2019 (LHGJ20190657).

Author information

Authors and Affiliations

Authors

Contributions

DXL and HTC contributed to the conception of the study; DXL and MLZ performed the experiment; DXL, MLZ, and HTC contributed significantly to analysis and manuscript preparation; DXL and HTC performed the data analyses and wrote the manuscript; DXL and HTC perform the analysis with constructive discussions. All authors contributed to reading and revising the manuscript and approved the submitted version.

Corresponding author

Correspondence to Hongtu Chao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhang, M. & Chao, H. Significance of glutathione peroxidase 4 and intracellular iron level in ovarian cancer cells—“utilization” of ferroptosis mechanism. Inflamm. Res. 70, 1177–1189 (2021). https://doi.org/10.1007/s00011-021-01495-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01495-6

Keywords

Navigation