Skip to main content

Advertisement

Log in

Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Janus kinase/signal transduction and transcriptional activator (JAK/STAT) signaling pathway is a transport hub for cytokine secretion and exerts its effects. The activation of JAK/STAT signaling pathway is essential for the regulation of inflammatory responses. Inappropriate activation or deletion of JAK/STAT signaling pathway is the initiator of the inflammatory response. JAK/STAT signaling pathway has been demonstrated to be involved in the process of innate and adaptive immune response to inflammatory bowel disease (IBD). In this review, we discuss the role of the JAK/STAT signaling pathway in the regulation of different cells in IBD, as well as new findings on the involvement of the JAK/STAT signaling pathway in the regulation of the intestinal immune response. The current status of JAK inhibitors in the treatment of IBD is summarized as well. This review highlights natural remedies that can serve as potential JAK inhibitors. These phytochemicals may be useful in the identification of precursor compounds in the process of designing and developing novel JAK inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, et al. Ulcerative colitis. Nat Rev Dis Primers. 2020;6:74. https://doi.org/10.1038/s41572-020-0205-x.

    Article  PubMed  Google Scholar 

  2. Roda G, Chien Ng S, Kotze PG, Argollo M, Panaccione R, Spinelli A, et al. Crohn’s disease. Nat Rev Dis Primers. 2020;6:22. https://doi.org/10.1038/s41572-020-0156-2.

    Article  PubMed  Google Scholar 

  3. Bernstein CN, Burchill C, Targownik LE, Singh H, Roos LL. Events within the first year of life, but not the neonatal period, affect risk for later development of inflammatory bowel diseases. Gastroenterology. 2019;156:2190–7. https://doi.org/10.1053/j.gastro.2019.02.004.

    Article  PubMed  Google Scholar 

  4. Hedin CRH, Vavricka SR, Stagg AJ, Schoepfer A, Raine T, Puig L, et al. The pathogenesis of extraintestinal manifestations: implications for IBD research, diagnosis, and therapy. J Crohn’s Colitis. 2019;13:541–54. https://doi.org/10.1093/ecco-jcc/jjy191.

    Article  CAS  Google Scholar 

  5. Aschenbrenner D, Quaranta M, Banerjee S, Ilott N, Jansen J, Steere B, et al. Deconvolution of monocyte responses in inflammatory bowel disease reveals an IL-1 cytokine network that regulates IL-23 in genetic and acquired IL-10 resistance. Gut. 2020. https://doi.org/10.1136/gutjnl-2020-321731.

    Article  PubMed  Google Scholar 

  6. Wang S, Zhang S, Huang S, Wu Z, Pang J, Wu Y, et al. Resistant maltodextrin alleviates dextran sulfate sodium-induced intestinal inflammatory injury by increasing butyric acid to inhibit proinflammatory cytokine levels. BioMed Res Int. 2020;2020:7694734. https://doi.org/10.1155/2020/7694734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neurath MF. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14:269–78. https://doi.org/10.1038/nrgastro.2016.208.

    Article  CAS  PubMed  Google Scholar 

  8. O’Shea JJ. Targeting the Jak/STAT pathway for immunosuppression. Ann Rheum Dis. 2004;63(2):ii67–71. https://doi.org/10.1136/ard.2004.028290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang A, Singh K, Ibrahim W, King B, Damsky W. The promise of JAK inhibitors for treatment of sarcoidosis and other inflammatory disorders with macrophage activation: a review of the literature. Yale J Biol Med. 2020;93:187–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shivaji UN, Nardone OM, Cannatelli R, Smith SC, Ghosh S, Iacucci M. Small molecule oral targeted therapies in ulcerative colitis. Lancet Gastroenterol Hepatol. 2020;5:850–61. https://doi.org/10.1016/S2468-1253(19)30414-5.

    Article  PubMed  Google Scholar 

  11. Boland BS, Sandborn WJ, Chang JT. Update on Janus kinase antagonists in inflammatory bowel disease. Gastroenterol Clin N Am. 2014;43:603–17. https://doi.org/10.1016/j.gtc.2014.05.011.

    Article  Google Scholar 

  12. Ma C, Battat R, Dulai PS, Parker CE, Sandborn WJ, Feagan BG, et al. Innovations in oral therapies for inflammatory bowel disease. Drugs. 2019;79:1321–35. https://doi.org/10.1007/s40265-019-01169-y.

    Article  CAS  PubMed  Google Scholar 

  13. Bazan JF. Shared architecture of hormone binding domains in type I and II interferon receptors. Cell. 1990;61:753–4. https://doi.org/10.1016/0092-8674(90)90182-e.

    Article  CAS  PubMed  Google Scholar 

  14. Blanchard C, Durual S, Estienne M, Bouzakri K, Heim MH, Blin N, et al. IL-4 and IL-13 up-regulate intestinal trefoil factor expression: requirement for STAT6 and de novo protein synthesis. J Immunol (Baltimore, Md: 1950). 2004;172:3775–83. https://doi.org/10.4049/jimmunol.172.6.3775.

    Article  CAS  Google Scholar 

  15. Liu R, Moriggl R, Zhang D, Li H, Karns R, Ruan HB, et al. Constitutive STAT5 activation regulates Paneth and Paneth-like cells to control clostridium difficile colitis. Life Sci Alliance. 2019;2:e201900296. https://doi.org/10.26508/lsa.201900296.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Günther C, Ruder B, Stolzer I, Dorner H, He GW, Chiriac MT, et al. Interferon lambda promotes paneth cell death via STAT1 signaling in mice and is increased in inflamed ileal tissues of patients with Crohn’s disease. Gastroenterol. 2019;157:1310–22. https://doi.org/10.1053/j.gastro.2019.07.031.

    Article  CAS  Google Scholar 

  17. Li H, Feng C, Fan C, Yang Y, Yang X, Lu H, et al. Intervention of oncostatin M-driven mucosal inflammation by berberine exerts therapeutic property in chronic ulcerative colitis. Cell Death Dis. 2020;11:271. https://doi.org/10.1038/s41419-020-2470-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Li W, Fu C, Song Y, Fu Q. Lonicerae japonicae flos and Lonicerae flos: a systematic review of ethnopharmacology, phytochemistry and pharmacology. Phytochem Rev. 2019;49:74–9. https://doi.org/10.1007/s11101-019-09655-7.

    Article  CAS  Google Scholar 

  19. Martin-Gallausiaux C, Larraufie P, Jarry A, Béguet-Crespel F, Marinelli L, Ledue F, et al. Butyrate produced by commensal bacteria down-regulates expression a dual mechanism in human intestinal epithelial cells. Front Immunol. 2018;9:2838. https://doi.org/10.3389/fimmu.2018.02838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dambacher J, Beigel F, Seiderer J, Haller D, Göke B, Auernhammer CJ, et al. Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease. Gut. 2007;56:1257–65. https://doi.org/10.1136/gut.2006.118679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilbert S, Nivarthi H, Mayhew CN, Lo Y-H, Noah TK, Vallance J, et al. Activated STAT5 confers resistance to intestinal injury by increasing intestinal stem cell proliferation and regeneration. Stem Cell Rep. 2015;4:209–25. https://doi.org/10.1016/j.stemcr.2014.12.004.

    Article  CAS  Google Scholar 

  22. Takashima S, Martin ML, Jansen SA, Fu Y, Bos J, Chandra D, et al. T cell-derived interferon-γ programs stem cell death in immune-mediated intestinal damage. Sci Immunol. 2019;4:eaay8556. https://doi.org/10.1126/sciimmunol.aay8556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richmond CA, Rickner H, Shah MS, Ediger T, Deary L, Zhou F, et al. JAK/STAT-1 signaling is required for reserve intestinal stem cell activation during intestinal regeneration following acute inflammation. Stem Cell Rep. 2018;10:17–26. https://doi.org/10.1016/j.stemcr.2017.11.015.

    Article  CAS  Google Scholar 

  24. Peplowski MA, Dicay M, Baggio CH, Wysokinski F, Renaux B, Hollenberg MD, et al. Interferon gamma decreases intestinal epithelial aquaporin 3 expression through downregulation of constitutive transcription. J Mol Med (Berlin, Germany). 2018;96:1081–93. https://doi.org/10.1007/s00109-018-1681-2.

    Article  CAS  Google Scholar 

  25. Dicay MS, Hirota CL, Ronaghan NJ, Peplowski MA, Zaheer RS, Carati CA, et al. Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation. PLoS ONE. 2015;10:e0118713. https://doi.org/10.1371/journal.pone.0118713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gilbert S, Zhang R, Denson L, Moriggl R, Steinbrecher K, Shroyer N, et al. Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain kinase-mediated loss of barrier function and inflammation. EMBO Mol Med. 2012;4:109–24. https://doi.org/10.1002/emmm.201100192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eissa N, Hussein H, Mesgna R, Bonin S, Hendy GN, Metz-Boutigue MH, et al. Catestatin Regulates epithelial cell dynamics to improve intestinal inflammation. Vaccines. 2018;6:67. https://doi.org/10.3390/vaccines6040067.

    Article  CAS  PubMed Central  Google Scholar 

  28. Wang Y, Mumm JB, Herbst R, Kolbeck R, Wang Y. IL-22 increases permeability of intestinal epithelial tight junctions by enhancing Claudin-2 expression. J Immunol (Baltimore, Md: 1950). 2017;199:3316–25. https://doi.org/10.4049/jimmunol.1700152.

    Article  CAS  Google Scholar 

  29. Krishnan M, McCole DF. T cell protein tyrosine phosphatase prevents STAT1 induction of claudin-2 expression in intestinal epithelial cells. Ann NY Acad Sci. 2017;1405:116–30. https://doi.org/10.1111/nyas.13439.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou X, Li W, Wang S, Zhang P, Wang Q, Xiao J, et al. YAP Aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Rep. 2019;27:1176–89. https://doi.org/10.1016/j.celrep.2019.03.028.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Li X, Luo Z, Ma L, Zhu S, Wang Z, et al. ECM1 is an essential factor for the determination of M1 macrophage polarization in IBD in response to LPS stimulation. Proc Natl Acad Sci USA. 2020;117:3083–92. https://doi.org/10.1073/pnas.1912774117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Najjar I, Fagard R. STAT1 and pathogens, not a friendly relationship. Biochimie. 2010;92:425–44. https://doi.org/10.1016/j.biochi.2010.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li HS, Watowich SS. Innate immune regulation by STAT-mediated transcriptional mechanisms. Immunol Rev. 2014;261:84–101. https://doi.org/10.1111/imr.12198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giri J, Das R, Nylen E, Chinnadurai R, Galipeau J. CCL2 and CXCL12 derived from mesenchymal stromal cells cooperatively polarize IL-10+ Tissue macrophages to mitigate gut injury. Cell Rep. 2020;30:1923–34. https://doi.org/10.1016/j.celrep.2020.01.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vier J, Groth M, Sochalska M, Kirschnek S. The anti-apoptotic Bcl-2 family protein A1/Bfl-1 regulates neutrophil survival and homeostasis and is controlled via PI3K and JAK/STAT signaling. Cell Death Dis. 2016;7:e2103. https://doi.org/10.1038/cddis.2016.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fournier BM, Parkos CA. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5:354–66. https://doi.org/10.1038/mi.2012.24.

    Article  CAS  PubMed  Google Scholar 

  37. Stabile H, Scarno G, Fionda C, Gismondi A, Santoni A, Gadina M, et al. JAK/STAT signaling in regulation of innate lymphoid cells: the gods before the guardians. Immunol Rev. 2018;286:148–59. https://doi.org/10.1111/imr.12705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Powell N, Pantazi E, Pavlidis P, Tsakmaki A, Li K, Yang F, et al. Interleukin-22 orchestrates a pathological endoplasmic reticulum stress response transcriptional programme in colonic epithelial cells. Gut. 2020;69:578–90. https://doi.org/10.1136/gutjnl-2019-318483.

    Article  CAS  PubMed  Google Scholar 

  39. Cao Q, Gao X, Lin Y, Yue C, Wang Y, Quan F, et al. Thymopentin ameliorates dextran sulfate sodium-induced colitis by triggering the production of IL-22 in both innate and adaptive lymphocytes. Theranostics. 2019;9:7490–505. https://doi.org/10.7150/thno.35015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Castellanos JG, Woo V, Viladomiu M, Putzel G, Lima S, Diehl GE, et al. Microbiota-induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis. Immunity. 2018;49:1077–89. https://doi.org/10.1016/j.immuni.2018.10.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li HS, Yang CY, Nallaparaju KC, Zhang H, Liu Y-J, Goldrath AW, et al. The signal transducers STAT5 and STAT3 control expression of Id2 and E2–2 during dendritic cell development. Blood. 2012;120:4363–73. https://doi.org/10.1182/blood-2012-07-441311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang C, Zhang Y, Wang J, Li L, Wang L, Hu M, et al. A novel cyclic helix B peptide inhibits dendritic cell maturation during amelioration of acute kidney graft rejection through Jak-2/STAT3/SOCS1. Cell Death Dis. 2015;6:e1993. https://doi.org/10.1038/cddis.2015.338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sottile R, Federico G, Garofalo C, Tallerico R, Faniello MC, Quaresima B, et al. Iron and ferritin modulate MHC class I expression and NK cell recognition. Front Immunol. 2019;10:224. https://doi.org/10.3389/fimmu.2019.00224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Simpson JAD, Al-Attar A, Watson NFS, Scholefield JH, Ilyas M, Durrant LG. Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer. Gut. 2010;59:926–33. https://doi.org/10.1136/gut.2009.194472.

    Article  CAS  PubMed  Google Scholar 

  45. Yu C-F, Peng W-M, Schlee M, Barchet W, Eis-Hübinger AM, Kolanus W, et al. SOCS1 and SOCS3 Target IRF7 degradation to suppress TLR7-mediated type I IFN production of human plasmacytoid dendritic cells. J Immunol (Baltimore Md: 1950). 2018;200:4024–35. https://doi.org/10.4049/jimmunol.1700510.

    Article  CAS  Google Scholar 

  46. Zhu Z, Zhao Y, Huo H, Gao X, Zheng J, Li J, et al. HHX-5, a derivative of sesquiterpene from Chinese agarwood, suppresses innate and adaptive immunity via inhibiting STAT signaling pathways. Eur J Pharmacol. 2016;791:412–23. https://doi.org/10.1016/j.ejphar.2016.09.023.

    Article  CAS  PubMed  Google Scholar 

  47. Obraztsov IV, Shirokikh KE, Obraztsova OI, Shapina MV, Wang M-H, Khalif IL. Multiple cytokine profiling: a new model to predict response to tumor necrosis factor antagonists in ulcerative colitis patients. Inflamm Bowel Dis. 2019;25:524–31. https://doi.org/10.1093/ibd/izy358.

    Article  PubMed  Google Scholar 

  48. Zhao H-M, Xu R, Huang X-Y, Cheng S-M, Huang M-F, Yue H-Y, et al. Curcumin Suppressed Activation of Dendritic Cells via JAK/STAT/SOCS Signal in Mice with Experimental Colitis. Front Pharmacol. 2016;7:455. https://doi.org/10.3389/fphar.2016.00455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Poholek CH, Raphael I, Wu D, Revu S, Rittenhouse N, Uche UU, et al. Noncanonical STAT3 activity sustains pathogenic Th17 proliferation and cytokine response to antigen. J Exp Med. 2020;217:e20191761. https://doi.org/10.1084/jem.20191761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cătană C-S, Berindan Neagoe I, Cozma V, Magdaş C, Tăbăran F, Dumitraşcu DL. Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease. World J Gastroenterol. 2015;21:5823–30. https://doi.org/10.3748/wjg.v21.i19.5823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chaudhry A, Rudensky AY. Control of inflammation by integration of environmental cues by regulatory T cells. J Clin Invest. 2013;123:939–44. https://doi.org/10.1172/JCI57175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu M, Li S, Li MO. TGF-β control of adaptive immune tolerance: a break from treg cells. BioEssays. 2018;40:e1800063. https://doi.org/10.1002/bies.201800063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li H-B, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, et al. mA mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017;548:338–42. https://doi.org/10.1038/nature23450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bitar M, Boldt A, Freitag M-T, Gruhn B, Köhl U, Sack U. Evaluating STAT5 phosphorylation as a mean to assess T cell proliferation. Front Immunol. 2019;10:722. https://doi.org/10.3389/fimmu.2019.00722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goetz CA, Harmon IR, O’Neil JJ, Burchill MA, Farrar MA. STAT5 activation underlies IL7 receptor-dependent B cell development. J Immunol (Baltimore Md: 1950). 2004;172:4770–8. https://doi.org/10.4049/jimmunol.172.8.4770.

    Article  CAS  Google Scholar 

  56. Sun H, Bi J, Lei Q, Wan X, Jiang T, Wu C, et al. Partial enteral nutrition increases intestinal sIgA levels in mice undergoing parenteral nutrition in a dose-dependent manner. Int J Surg. 2018;49:74–9. https://doi.org/10.1016/j.ijsu.2017.12.011.

    Article  PubMed  Google Scholar 

  57. Zeng B, Wang D, Wang H, Chen T, Luo J, Xi Q, et al. Dietary soy protein isolate attenuates intestinal immunoglobulin and mucin expression in young mice compared with casein. Nutrients. 2020;12:2739. https://doi.org/10.3390/nu12092739.

    Article  CAS  PubMed Central  Google Scholar 

  58. Sandborn WJ, Feagan BG, Loftus EV, Peyrin-Biroulet L, Van Assche G, D’Haens G, et al. Efficacy and safety of upadacitinib in a randomized trial of patients with crohn’s disease. Gastroenterology. 2020. https://doi.org/10.1053/j.gastro.2020.01.047.

    Article  PubMed  Google Scholar 

  59. Sandborn WJ, Ghosh S, Panes J, Schreiber S, D’Haens G, Tanida S, et al. Efficacy of upadacitinib in a randomized trial of patients with active ulcerative colitis. Gastroenterol. 2020;158:2139–49. https://doi.org/10.1053/j.gastro.2020.02.030.

    Article  CAS  Google Scholar 

  60. Sandborn WJ, Nguyen DD, Beattie DT, Brassil P, Krey W, Woo J, et al. Development of gut-selective pan-janus kinase inhibitor TD-1473 for ulcerative colitis: a translational medicine programme. J Crohn’s Colitis. 2020;14:1202–13. https://doi.org/10.1093/ecco-jcc/jjaa049.

    Article  Google Scholar 

  61. Wang L (2017) Study on the extraction and isolation of Polysaccharide from Portulaca oleracea and its anti ulcerative colitis mechanism. Vol. Master's. China: Shaanxi University of traditional Chinese Medicine

  62. Ma C, Lee JK, Mitra AR, Teriaky A, Choudhary D, Nguyen TM, et al. Systematic review with meta-analysis: efficacy and safety of oral Janus kinase inhibitors for inflammatory bowel disease. Aliment Pharmacol Ther. 2019;50:5. https://doi.org/10.1111/apt.15297.

    Article  CAS  PubMed  Google Scholar 

  63. FDA. An investigational study of experimental medication bms-986165 in participants with moderate to severe Crohn's Disease 2021;https://clinicaltrials.gov/ct2/show/record/NCT03599622?term=BMS-986165&draw=2&rank=26

  64. D’Amico F, Fiorino G, Furfaro F, Allocca M, Danese S. Janus kinase inhibitors for the treatment of inflammatory bowel diseases: developments from phase I and phase II clinical trials. Expert Opin Invest Drugs. 2018;27:595–9. https://doi.org/10.1080/13543784.2018.1492547.

    Article  CAS  Google Scholar 

  65. Sands BE, Sandborn WJ, Feagan BG, Lichtenstein GR, Zhang H, Strauss R, et al. Peficitinib, an oral janus kinase inhibitor, in moderate-to-severe ulcerative colitis: results from a randomised, phase 2 study. J Crohn’s Colitis. 2018;12:1158–69. https://doi.org/10.1093/ecco-jcc/jjy085.

    Article  Google Scholar 

  66. Curtis JR, Regueiro M, Yun H, Su C, DiBonaventura M, Lawendy N, et al. Tofacitinib treatment safety in moderate to severe ulcerative colitis: comparison of observational population cohort data from the ibm marketscan® administrative claims database with tofacitinib trial data. Inflamm Bowel Dis. 2020. https://doi.org/10.1093/ibd/izaa289.

    Article  PubMed  Google Scholar 

  67. Fenster M, Alayo QA, Khatiwada A, Wang W, Dimopoulos C, Gutierrez A, et al. Real-World effectiveness and safety of tofacitinib in Crohn’s disease and IBD-U: a multicenter study from the TROPIC consortium. Clin Gastroenterol Hepatol. 2020. https://doi.org/10.1016/j.cgh.2020.10.025.

    Article  PubMed  Google Scholar 

  68. Shukla T, Sands BE. Novel non-biologic targets for inflammatory bowel disease. Curr Gastroenterol Rep. 2019;21:22. https://doi.org/10.1007/s11894-019-0689-2.

    Article  PubMed  Google Scholar 

  69. Li B, Jiang N, Gu S. Effects of wumei pill and its disassembled prescriptions on IL-6/JAK/STAT3 signaling pathway and pathological changes of colonic mucosa in rats with ulcerative colitis. Pharmacol Clin Chin Materia Medica. 2016;32:14–7. https://doi.org/10.13412/j.cnki.zyyl.2016.01.004.

    Article  Google Scholar 

  70. Tao M, Wang X, Wang A, Gao N, Pan J, Liu X, et al. Effect of jiaweiwumel decoction on regulatory T cells and interleukin-10 in a rat model of ulcerative colitis. J Tradit Chin Med. 2015;35:312–5. https://doi.org/10.1016/s0254-6272(15)30103-5.

    Article  PubMed  Google Scholar 

  71. Zhai Y-h, Zhu X-d, Yang Y, Li T, Qi Q-f. Effects of Tongxie Yaofang on the STAT3 mRNA and protein expressions of colonic mucosa in rats with experimental ulcerative colitis. Chin J Tradit Chin Med Pharmacol. 2017;32:2710–3.

    Google Scholar 

  72. Ji J, Chen Y. Effect of huangqin decoction on IL-6, JAK-STAT3 signal pathway and HMGB-1 expression in rats with ulcerative colitis. China J Chin Med. 2018;33:1297–301. https://doi.org/10.16368/j.issn.1674-8999.2018.07.307.

    Article  Google Scholar 

  73. Lin J (2012) Effect of changyuning granule on JAK/STAT pathway in rats with ulcerative colitis. Vol. Master's. China: Heilongjiang University of traditional Chinese Medicine

  74. Wang W, Li G, Su P, Xu Q, Zheng C, Li M, et al. Therapeutic efficacy of Jiawei Chaishao Liujun Granules for rats with ulcerative colitis and its effect on myeloid differentiation factor 88 expression in colonic tissues (in Chinese). Guangxi Med J. 2020;42:821–6. https://doi.org/10.11675/j.issn.0253-4304.2020.07.09.

    Article  Google Scholar 

  75. He L (2016) Effect of Wenshen Jianpi method on the expression of SOCS2/3 gene and protein in colonic tissue of ulcerative colitis rats. Vol. Master's. China: Gansu University of traditional Chinese Medicine

  76. Zhang X, Wu J, Ye B, Wang Q, Xie X, Shen H. Protective effect of curcumin on TNBS-induced intestinal inflammation is mediated through the JAK/STAT pathway. BMC Complement Altern Med. 2016;16:299. https://doi.org/10.1186/s12906-016-1273-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ashrafizadeh M, Rafiei H, Mohammadinejad R, Afshar EG, Farkhondeh T, Samarghandian S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: a review. Phytother Res. 2020;34:1745–60. https://doi.org/10.1002/ptr.6642.

    Article  CAS  PubMed  Google Scholar 

  78. Kim T-W, Shin J-S, Chung K-S, Lee Y-G, Baek N-I, Lee K-T. Anti-inflammatory mechanisms of Koreanaside A, a lignan isolated from the flower of, against LPS-induced macrophage activation and DSS-induced colitis mice: the crucial role of AP-1, NF-κB, and JAK/STAT signaling. Cells. 2019;8:1164. https://doi.org/10.3390/cells8101163.

    Article  CAS  Google Scholar 

  79. Yang W, Zhou G, Yu T, Chen L, Yu L, Guo Y, et al. Critical role of ROCK2 activity in facilitating mucosal CD4 T cell activation in inflammatory bowel disease. J Autoimmun. 2018;89:125–38. https://doi.org/10.1016/j.jaut.2017.12.009.

    Article  CAS  PubMed  Google Scholar 

  80. Radwan RR, Karam HM. Resveratrol attenuates intestinal injury in irradiated rats via PI3K/Akt/mTOR signaling pathway. Environ Toxicol. 2020;35:223–30. https://doi.org/10.1002/tox.22859.

    Article  CAS  PubMed  Google Scholar 

  81. Serra D, Rufino AT, Mendes AF, Almeida LM, Dinis TCP. Resveratrol modulates cytokine-induced Jak/STAT activation more efficiently than 5-aminosalicylic acid: an in vitro approach. PLoS ONE. 2014;9:e109048. https://doi.org/10.1371/journal.pone.0109048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shi Z, Liu Z, Liu C, Wu M, Su H, Ma X, et al. Spectrum-effect relationships between chemical fingerprints and antibacterial effects of Lonicerae Japonicae Flos and Lonicerae Flos Base on UPLC and microcalorimetry. Front Pharmacol. 2016;7:12. https://doi.org/10.3389/fphar.2016.00012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nunes C, Almeida L, Barbosa RM, Laranjinha J. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food Funct. 2017;8:387–96. https://doi.org/10.1039/c6fo01529h.

    Article  CAS  PubMed  Google Scholar 

  84. Liang J, Lin Y, Lu Z, Xiong W, Chen D, Chen J, et al. Mechanism of Mangiferin on ulcerative colitis in mice based on network pharmacology. Chinese Tradit Patent Med. 2019;41:2503–8. https://doi.org/10.3969/j.issn.1001-1528.2019.10.046.

    Article  Google Scholar 

  85. Liu Y, Liu X, Hua W, Wei Q, Fang X, Zhao Z, et al. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis. Int Immunopharmacol. 2018;57:121–31. https://doi.org/10.1016/j.intimp.2018.01.049.

    Article  CAS  PubMed  Google Scholar 

  86. Jin X, Wang J, Xia Z-M, Shang C-H, Chao Q-L, Liu Y-R, et al. Anti-inflammatory and anti-oxidative activities of paeonol and its metabolites through blocking MAPK/ERK/p38 signaling pathway. Inflammation. 2016;39:434–46. https://doi.org/10.1007/s10753-015-0265-3.

    Article  CAS  PubMed  Google Scholar 

  87. Liu S, Zhang S, Lv X, Lu J, Ren C, Zeng Z, et al. Limonin ameliorates ulcerative colitis by regulating STAT3/miR-214 signaling pathway. Int Immunopharmacol. 2019;75:105768. https://doi.org/10.1016/j.intimp.2019.105768.

    Article  CAS  PubMed  Google Scholar 

  88. Xu R, Yuan Y, Qi J, Zhou J, Guo X, Zhang J, et al. Elucidation of the intestinal absorption mechanism of loganin in the human intestinal Caco-2 cell model. Evid Based Complement Alternat Med. 2018;2018:8340563. https://doi.org/10.1155/2018/8340563.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yuan J, Cheng W, Zhang G, Ma Q, Li X, Zhang B, et al. Protective effects of iridoid glycosides on acute colitis via inhibition of the inflammatory response mediated by the STAT3/NF-кB pathway. Int Immunopharmacol. 2020;81:106240. https://doi.org/10.1016/j.intimp.2020.106240.

    Article  CAS  PubMed  Google Scholar 

  90. Liang T, Wang Z, Zhang Z. Therapeutic effect of allicin on TNBS induced colitis in rats and its IL-6/JAK/STAT3 pathway. Chin J Crit Care Med. 2017;37:321–3. https://doi.org/10.3969/j.issn.1002-1949.2017.z1.243.

    Article  Google Scholar 

  91. Li C, Lun W, Zhao X, Lei S, Guo Y, Ma J, et al. Allicin alleviates inflammation of trinitrobenzenesulfonic acid-induced rats and suppresses P38 and JNK pathways in Caco-2 cells. Mediators Inflamm. 2015;2015:434692. https://doi.org/10.1155/2015/434692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pandurangan AK, Ismail S, Saadatdoust Z, Esa NM. Allicin alleviates dextran sodium sulfate- (DSS-) induced ulcerative colitis in BALB/c mice. Oxid Med Cell Longev. 2015;2015:605208. https://doi.org/10.1155/2015/605208.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the contributions of colleagues, institutions, or agencies that aided the efforts of the authors.

Funding

This work was supported by the National Key Research and Development Project of China (2017YFD050160203), National Natural Science Foundation of China (81600440).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The literature search and data analysis were performed by LW, YH, BS. The draft of the manuscript was written by LW, YH, BS. YX, JW, DC critically revised the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yongjian Xiong, Jingyu Wang or Dapeng Chen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Responsible Editor: H. Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Hu, Y., Song, B. et al. Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm. Res. 70, 753–764 (2021). https://doi.org/10.1007/s00011-021-01482-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01482-x

Keywords

Navigation