Skip to main content
Log in

VIP modulates human macrophages phenotype via FPRL1 via activation of RhoA-GTPase and PLC pathways

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

This study is aimed at uncovering the signaling pathways activated by vasoactive intestinal peptide in human macrophages

Materials

Human peripheral blood mononuclear cell-derived macrophages were used for the in vitro investigation of the VIP-activated signaling pathways.

Methods and treatment

Time-course and dose–response experiments and siRNA were used in human macrophages co-challenged with various concentrations of VIP and different MAPK pharmacologic inhibitors to investigate signaling pathways activated by VIP. Flow analysis was performed to assess the levels of CD11b, CD35 and CD66. Luminescence spectrometry was used to measure the levels of the released hydrogen peroxide and the intracellular calcium levels in the media.

Results

Macrophages incubated with VIP showed increased phospho-AKT and phospho-ERK1/2 levels in a GTP-RhoA-GTPase-dependent manner. Similarly, VIP increased intracellular release of H2O2 and calcium via PLC and GTP-RhoA-GTPase, in addition to inducing the expression of CD11b, CD35, CD66 and MMP9. Furthermore, VIP activated P38 MAPK through the cAMP/PKA pathway but was independent of both PLC and RhoA signaling. The above-mentioned VIP effects were mediated via activation of the FPRL1 receptor.

Conclusion

VIP/FPRL1/VPAC/GTP-RhoA-GTPase signaling modulated macrophages phenotype through activation of multiple signaling pathways including ERK1/2, AKT, P38, ROS, cAMP and calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elhelu MA. The role of macrophages in immunology. J Natl Med Assoc. 1983;75:314–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hirayama D, Iida T, Nakase H (2017) The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci 19.

  3. Said SI, Mutt V. Polypeptide with broad biological activity: isolation from small intestine. Science. 1970;169:1217–8.

    Article  CAS  PubMed  Google Scholar 

  4. Said SI, Rosenberg RN. Vasoactive intestinal polypeptide: abundant immunoreactivity in neural cell lines and normal nervous tissue. Science. 1976;192:907–8.

    Article  CAS  PubMed  Google Scholar 

  5. Delgado M, Ganea D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids. 2013;45:25–39.

    Article  CAS  PubMed  Google Scholar 

  6. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, et al. International union of pharmacology XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev. 1998;50:265–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Delgado M, Pozo D, Ganea D. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev. 2004;56:249–90.

    Article  CAS  PubMed  Google Scholar 

  8. Delgado M, Ganea D. Vasoactive intestinal peptide inhibits IL-8 production in human monocytes. Biochem Biophys Res Commun. 2003;301:825–32.

    Article  CAS  PubMed  Google Scholar 

  9. Delgado M, Ganea D. Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation. FASEB J. 2003;17:944–6.

    Article  CAS  PubMed  Google Scholar 

  10. Delgado M, Varela N, Gonzalez-Rey E. Vasoactive intestinal peptide protects against beta-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels. Glia. 2008;56:1091–103.

    Article  PubMed  Google Scholar 

  11. Butcher BA, Kim L, Panopoulos AD, Watowich SS, Murray PJ, Denkers EY. IL-10-independent STAT3 activation by Toxoplasma gondii mediates suppression of IL-12 and TNF-alpha in host macrophages. J Immunol. 2005;174:3148–52.

    Article  CAS  PubMed  Google Scholar 

  12. Delgado M, Ganea D. Inhibition of endotoxin-induced macrophage chemokine production by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in vitro and in vivo. J Immunol. 2001;167:966–75.

    Article  CAS  PubMed  Google Scholar 

  13. Delgado M, Ganea D. Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB J. 2003;17:1922–4.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Zhang CY, Duan JX, Li Q, Yang HH, Sun CC, et al. Vasoactive intestinal peptide suppresses the NLRP3 inflammasome activation in lipopolysaccharide-induced acute lung injury mice and macrophages. Biomed Pharmacother. 2020;121:109596.

    Article  CAS  PubMed  Google Scholar 

  15. Benitez R, Delgado-Maroto V, Caro M, Forte-Lago I, Duran-Prado M, O’Valle F, et al. Vasoactive intestinal peptide ameliorates acute myocarditis and atherosclerosis by regulating inflammatory and autoimmune responses. J Immunol. 2018;200:3697–710.

    Article  CAS  PubMed  Google Scholar 

  16. Fujimori N, Oono T, Igarashi H, Ito T, Nakamura T, Uchida M, et al. Vasoactive intestinal peptide reduces oxidative stress in pancreatic acinar cells through the inhibition of NADPH oxidase. Peptides. 2011;32:2067–76.

    Article  CAS  PubMed  Google Scholar 

  17. Chedid P, Boussetta T, Dang PM, Belambri SA, Marzaioli V, Fasseau M, et al. Vasoactive intestinal peptide dampens formyl-peptide-induced ROS production and inflammation by targeting a MAPK-p47(phox) phosphorylation pathway in monocytes. Mucosal Immunol. 2017;10:332–40.

    Article  CAS  PubMed  Google Scholar 

  18. Delgado M, Ganea D. Inhibition of IFN-gamma-induced janus kinase-1-STAT1 activation in macrophages by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. J Immunol. 2000;165:3051–7.

    Article  CAS  PubMed  Google Scholar 

  19. Delgado M, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide inhibit the MEKK1/MEK4/JNK signaling pathway in LPS-stimulated macrophages. J Neuroimmunol. 2000;110:97–105.

    Article  CAS  PubMed  Google Scholar 

  20. Delgado M, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit nuclear factor-kappa B-dependent gene activation at multiple levels in the human monocytic cell line THP-1. J Biol Chem. 2001;276:369–80.

    Article  CAS  PubMed  Google Scholar 

  21. Delgado M, Munoz-Elias EJ, Kan Y, Gozes I, Fridkin M, Brenneman DE, et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tumor necrosis factor alpha transcriptional activation by regulating nuclear factor-kB and cAMP response element-binding protein/c-Jun. J Biol Chem. 1998;273:31427–36.

    Article  CAS  PubMed  Google Scholar 

  22. Ran WZ, Dong L, Tang CY, Zhou Y, Sun GY, Liu T, et al. Vasoactive intestinal peptide suppresses macrophage-mediated inflammation by downregulating interleukin-17A expression via PKA and PKC-dependent pathways. Int J Exp Pathol. 2015;96:269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Henle F, Fischer C, Meyer DK, Leemhuis J. Vasoactive intestinal peptide and PACAP38 control N-methyl-D-aspartic acid-induced dendrite motility by modifying the activities of Rho GTPases and phosphatidylinositol 3-kinases. J Biol Chem. 2006;281:24955–69.

    Article  CAS  PubMed  Google Scholar 

  24. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–35.

    Article  CAS  PubMed  Google Scholar 

  25. Leverrier Y, Ridley AJ. Requirement for Rho GTPases and PI 3-kinases during apoptotic cell phagocytosis by macrophages. Curr Biol. 2001;11:195–9.

    Article  CAS  PubMed  Google Scholar 

  26. Harfi I, D’Hondt S, Corazza F, Sariban E. Regulation of human polymorphonuclear leukocytes functions by the neuropeptide pituitary adenylate cyclase-activating polypeptide after activation of MAPKs. J Immunol. 2004;173:4154–63.

    Article  CAS  PubMed  Google Scholar 

  27. Hayez N, Harfi I, Lema-Kisoka R, Svoboda M, Corazza F, Sariban E. The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) modulate several biochemical pathways in human leukemic myeloid cells. J Neuroimmunol. 2004;149:167–81.

    Article  CAS  PubMed  Google Scholar 

  28. El Zein N, Badran BM, Sariban E. The neuropeptide pituitary adenylate cyclase activating protein stimulates human monocytes by transactivation of the Trk/NGF pathway. Cell Signal. 2007;19:152–62.

    Article  PubMed  Google Scholar 

  29. El Zein N, Corazza F, Sariban E. The neuropeptide pituitary adenylate cyclase activating protein is a physiological activator of human monocytes. Cell Signal. 2006;18:162–73.

    Article  PubMed  Google Scholar 

  30. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871–82.

    Article  CAS  PubMed  Google Scholar 

  31. Dagher-Hamalian C, Stephan J, Zeeni N, Harhous Z, Shebaby WN, Abdallah MS, et al. Ghrelin-induced multi-organ damage in mice fed obesogenic diet. Inflamm Res. 2020;69:1019–26.

    Article  CAS  PubMed  Google Scholar 

  32. Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2:1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res. 2015;107:321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carman CV, Martinelli R. T lymphocyte-endothelial interactions: emerging understanding of trafficking and antigen-specific immunity. Front Immunol. 2015;6:603.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Garcia JG, Davis HW, Patterson CE. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol. 1995;163:510–22.

    Article  CAS  PubMed  Google Scholar 

  36. Goeckeler ZM, Wysolmerski RB. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol. 1995;130:613–27.

    Article  CAS  PubMed  Google Scholar 

  37. Rodrigues SF, Granger DN. Blood cells and endothelial barrier function. Tissue Barriers. 2015;3:e978720.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhu B, Zhang L, Creighton J, Alexeyev M, Strada SJ, Stevens T. Protein kinase a phosphorylation of tau-serine 214 reorganizes microtubules and disrupts the endothelial cell barrier. Am J Physiol Lung Cell Mol Physiol. 2010;299:L493-501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prasain N, Stevens T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res. 2009;77:53–63.

    Article  CAS  PubMed  Google Scholar 

  40. Sit ST, Manser E. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci. 2011;124:679–83.

    Article  CAS  PubMed  Google Scholar 

  41. Jennings RT, Strengert M, Hayes P, El-Benna J, Brakebusch C, Kubica M, et al. RhoA determines disease progression by controlling neutrophil motility and restricting hyperresponsiveness. Blood. 2014;123:3635–45.

    Article  CAS  PubMed  Google Scholar 

  42. Allen WE, Zicha D, Ridley AJ, Jones GE. A role for Cdc42 in macrophage chemotaxis. J Cell Biol. 1998;141:1147–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murphy PM, Ozcelik T, Kenney RT, Tiffany HL, McDermott D, Francke U. A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J Biol Chem. 1992;267:7637–43.

    Article  CAS  PubMed  Google Scholar 

  44. Faour WH, Fayyad-Kazan H, El Zein N. fMLP-dependent activation of Akt and ERK1/2 through ROS/Rho a pathways is mediated through restricted activation of the FPRL1 (FPR2) receptor. Inflamm Res. 2018;67:711–22.

    Article  CAS  PubMed  Google Scholar 

  45. Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006–14.

    Article  CAS  PubMed  Google Scholar 

  46. Richardson ET, Shukla S, Nagy N, Boom WH, Beck RC, Zhou L, et al. ERK signaling is essential for macrophage development. PLoS ONE. 2015;10:e0140064.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shi L, Kishore R, McMullen MR, Nagy LE. Lipopolysaccharide stimulation of ERK1/2 increases TNF-alpha production via Egr-1. Am J Physiol Cell Physiol. 2002;282:C1205–11.

    Article  CAS  PubMed  Google Scholar 

  48. Yang Y, Kim SC, Yu T, Yi YS, Rhee MH, Sung GH, et al. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Med Inflamm. 2014;2014:352371.

    Article  Google Scholar 

  49. Kang YJ, Chen J, Otsuka M, Mols J, Ren S, Wang Y, et al. Macrophage deletion of p38alpha partially impairs lipopolysaccharide-induced cellular activation. J Immunol. 2008;180:5075–82.

    Article  CAS  PubMed  Google Scholar 

  50. Ding C, Ma Y, Chen X, Liu M, Cai Y, Hu X, et al. Integrin CD11b negatively regulates BCR signalling to maintain autoreactive B cell tolerance. Nat Commun. 2013;4:2813.

    Article  PubMed  Google Scholar 

  51. Yakubenko VP, Bhattacharjee A, Pluskota E, Cathcart MK. Alphambeta(2) integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation. Circ Res. 2011;108:544–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han C, Jin J, Xu S, Liu H, Li N, Cao X. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol. 2010;11:734–42.

    Article  CAS  PubMed  Google Scholar 

  53. El Zein N, Badran B, Sariban E. VIP differentially activates beta2 integrins, CR1, and matrix metalloproteinase-9 in human monocytes through cAMP/PKA, EPAC, and PI-3K signaling pathways via VIP receptor type 1 and FPRL1. J Leukoc Biol. 2008;83:972–81.

    Article  PubMed  Google Scholar 

  54. Yoon J, Terada A, Kita H. CD66b regulates adhesion and activation of human eosinophils. J Immunol. 2007;179:8454–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil El Zein.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harhous, Z., Faour, W.H. & El Zein, N. VIP modulates human macrophages phenotype via FPRL1 via activation of RhoA-GTPase and PLC pathways. Inflamm. Res. 70, 309–321 (2021). https://doi.org/10.1007/s00011-021-01436-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01436-3

Keywords

Navigation