Munford RS. Endotoxemia-menace, marker, or mistake? J Leukoc Biol. 2016;100(4):687–98. https://doi.org/10.1189/jlb.3RU0316-151R.
CAS
Article
PubMed
PubMed Central
Google Scholar
Martins IJ. Overnutrition determines LPS regulation of mycotoxin induced neurotoxicity in neurodegenerative diseases. Int J Mol Sci. 2015;16(12):29554–73. https://doi.org/10.3390/ijms161226190.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang YW, Zhou Q, Zhang X, Qian QQ, Xu JW, Ni PF, et al. Mild endoplasmic reticulum stress ameliorates lipopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. J Neuroinflamm. 2017;14(1):233. https://doi.org/10.1186/s12974-017-1002-7.
CAS
Article
Google Scholar
Kimura H. Physiological roles of hydrogen sulfide and polysulfides. In: Moore P, Whiteman M, editors. Chemistry, biochemistry and pharmacology of hydrogen sulfide. Handbook of experimental pharmacology, vol. 230. Springer, Cham;2015. p. 61–81. https://doi.org/10.1007/978-3-319-18144-8_3.
Rose P, Dymock BW, Moore PK. GYY4137, a novel water-soluble, H2S-releasing molecule. Methods Enzymol. 2015;554:143–67. https://doi.org/10.1016/bs.mie.2014.11.014.
CAS
Article
PubMed
Google Scholar
Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal. 2010;12(10):1147–54. https://doi.org/10.1089/ars.2009.2899.
CAS
Article
PubMed
PubMed Central
Google Scholar
Li L, Fox B, Keeble J, Salto-Tellez M, Winyard PG, Wood ME, et al. The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J Cell Mol Med. 2013;17(3):365–76. https://doi.org/10.1111/jcmm.12016.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kaya-Yasar Y, Karaman Y, Bozkurt TE, Onder SC, Sahin-Erdemli I. Effects of intranasal treatment with slow (GYY4137) and rapid (NaHS) donors of hydrogen sulfide in lipopolysaccharide-induced airway inflammation in mice. Pulm Pharmacol Ther. 2017;45:170–80. https://doi.org/10.1016/j.pupt.2017.06.006.
CAS
Article
PubMed
Google Scholar
Meng G, Wang J, Xiao Y, Bai W, Xie L, Shan L, et al. GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats. J Biomed Res. 2015;29(3):203–13. https://doi.org/10.7555/jbr.28.20140037.
Article
PubMed
Google Scholar
Bobkova NV, Garbuz DG, Nesterova I, Medvinskaya N, Samokhin A, Alexandrova I, et al. Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer’s disease. J Alzheimer’s Dis. 2014;38(2):425–35. https://doi.org/10.3233/jad-130779.
Article
Google Scholar
Bobkova NV, Evgen'ev M, Garbuz DG, Kulikov AM, Morozov A, Samokhin A, et al. Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. Proc Natl Acad Sci USA. 2015;112(52):16006–11. https://doi.org/10.1073/pnas.1516131112.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lu Z, Zhao T, Tao L, Yu Q, Yang Y, Cheng J, et al. Cystathionine beta-synthase-derived hydrogen sulfide correlates with successful aging in mice. Rejuvenation Res. 2019. https://doi.org/10.1089/rej.2018.2166.
Article
PubMed
Google Scholar
Gerasimova E, Lebedeva J, Yakovlev A, Zefirov A, Giniatullin R, Sitdikova G. Mechanisms of hydrogen sulfide (H2S) action on synaptic transmission at the mouse neuromuscular junction. Neuroscience. 2015;303:577–85. https://doi.org/10.1016/j.neuroscience.2015.07.036.
CAS
Article
PubMed
Google Scholar
Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC, Marathe GK. Sepsis: in search of cure. Inflamm Res. 2016;65(8):587–602. https://doi.org/10.1007/s00011-016-0937-y.
CAS
Article
PubMed
Google Scholar
Petrushanko IY, Melnikova EV, Yurinskaya MM, Vinokurov MG, Suslikov AV, Mitkevich VA, et al. Influence of the donor of hydrogen sulfide GYY4137 on the activation of human neutrophils by E. coli lipopolysaccharides. Mol Biol. 2019;53(1):101–8. https://doi.org/10.1134/s0026898419010130.
CAS
Article
Google Scholar
Rozhkova E, Yurinskaya M, Zatsepina O, Garbuz D, Karpov V, Surkov S, et al. Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann N Y Acad Sci. 2010;1197:94–107. https://doi.org/10.1111/j.1749-6632.2009.05375.x.
CAS
Article
PubMed
Google Scholar
Yurinskaya MM, Kochetkova OY, Shabarchina LI, Antonova OY, Suslikov AV, Evgen'ev MB, et al. Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFalpha in human phagocytes. Cell Stress Chaperones. 2017;22(1):163–71. https://doi.org/10.1007/s12192-016-0743-z.
CAS
Article
PubMed
Google Scholar
Yurinskaya MM, Mit'kevich VA, Evgen'ev MB, Makarov AA, Vinokurov MG. Heat-shock protein HSP70 reduces the secretion of TNFalpha by neuroblastoma cells and human monocytes induced with beta-amyloid peptides. Mol Biol. 2016;50(6):1053–6. https://doi.org/10.7868/s0026898416060239.
CAS
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–200. https://doi.org/10.1093/bioinformatics/btu170.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–211. https://doi.org/10.1093/bioinformatics/bts635.
CAS
Article
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30. https://doi.org/10.1093/bioinformatics/btt656.
CAS
Article
PubMed
Google Scholar
Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5. https://doi.org/10.1093/bioinformatics/bts356.
CAS
Article
PubMed
Google Scholar
Krasnov GS, Dmitriev AA, Kudryavtseva AV, Shargunov AV, Karpov DS, Uroshlev LA, et al. PPLine: an automated pipeline for SNP, SAP, and splice variant detection in the context of proteogenomics. J Proteom Res. 2015;14(9):3729–37. https://doi.org/10.1021/acs.jproteome.5b00490.
CAS
Article
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
CAS
Article
PubMed
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferrington DA, Gregerson DS. Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci. 2012;109:75–112. https://doi.org/10.1016/b978-0-12-397863-9.00003-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pan W, Kang Y. Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. Int Urol Nephrol. 2018;50(2):289–99. https://doi.org/10.1007/s11255-017-1689-5.
CAS
Article
PubMed
Google Scholar
Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines. 2017;5(4):34–75. https://doi.org/10.3390/vaccines5040034.
CAS
Article
PubMed Central
Google Scholar
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40. https://doi.org/10.1002/jcp.26429.
CAS
Article
PubMed
Google Scholar
Chen LS, Singh SP, Schuster M, Grinenko T, Bornstein SR, Kanczkowski W. RNA-seq analysis of LPS-induced transcriptional changes and its possible implications for the adrenal gland dysregulation during sepsis. J Steroid Biochem Mol Biol. 2019;191:105360. https://doi.org/10.1016/j.jsbmb.2019.04.009.
CAS
Article
PubMed
Google Scholar
Kim SJ, Kim HM. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep. 2017;50(2):55–7. https://doi.org/10.5483/bmbrep.2017.50.2.011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pfeiffer JR, McAvoy BL, Fecteau RE, Deleault KM, Brooks SA. CARHSP1 is required for effective tumor necrosis factor alpha mRNA stabilization and localizes to processing bodies and exosomes. Mol Cell Biol. 2011;31(2):277–86. https://doi.org/10.1128/mcb.00775-10.
CAS
Article
PubMed
Google Scholar
Mouzaoui S, Rahim I, Djerdjouri B. Aminoguanidine and curcumin attenuated tumor necrosis factor (TNF)-alpha-induced oxidative stress, colitis and hepatotoxicity in mice. Int Immunopharmacol. 2012;12(1):302–11. https://doi.org/10.1016/j.intimp.2011.10.010.
CAS
Article
PubMed
Google Scholar
Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26(4):249–61. https://doi.org/10.1016/j.tcb.2015.12.002.
CAS
Article
PubMed
Google Scholar
Sakuma S, Minamino S, Takase M, Ishiyama Y, Hosokura H, Kohda T, et al. Hydrogen sulfide donor GYY4137 suppresses proliferation of human colorectal cancer Caco-2 cells by inducing both cell cycle arrest and cell death. Heliyon. 2019;5(8):e02244. https://doi.org/10.1016/j.heliyon.2019.e02244.
Article
PubMed
PubMed Central
Google Scholar
Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Investig. 2006;86(1):9–22. https://doi.org/10.1038/labinvest.3700366.
CAS
Article
PubMed
Google Scholar
Reis J, Guan XQ, Kisselev AF, Papasian CJ, Qureshi AA, Morrison DC, et al. LPS-induced formation of immunoproteasomes: TNF-alpha and nitric oxide production are regulated by altered composition of proteasome-active sites. Cell Biochem Biophys. 2011;60(1–2):77–88. https://doi.org/10.1007/s12013-011-9182-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shen J, Reis J, Morrison DC, Papasian C, Raghavakaimal S, Kolbert C, et al. Key inflammatory signaling pathways are regulated by the proteasome. Shock. 2006;25(5):472–84. https://doi.org/10.1097/01.shk.0000209554.46704.64.
CAS
Article
PubMed
Google Scholar
Kustanova GA, Murashev AN, Karpov VL, Margulis BA, Guzhova IV, Prokhorenko IR, et al. Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress Chaperones. 2006;11(3):276–86. https://doi.org/10.1379/csc-195r.1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yurinskaya MM, Mitkevich VA, Kozin SA, Evgen'ev MB, Makarov AA, Vinokurov MG. HSP70 protects human neuroblastoma cells from apoptosis and oxidative stress induced by amyloid peptide isoAsp7-Abeta(1–42). Cell Death Dis. 2015;6:e1977. https://doi.org/10.1038/cddis.2015.336.
CAS
Article
PubMed
PubMed Central
Google Scholar
Evgen'ev MB, Krasnov GS, Nesterova IV, Garbuz DG, Karpov VL, Morozov AV, et al. Molecular mechanisms underlying neuroprotective effect of intranasal administration of human Hsp70 in mouse model of Alzheimer’s disease. J Alzheimer’s Dis. 2017;59(4):1415–26. https://doi.org/10.3233/jad-170398.
CAS
Article
Google Scholar
Yadav V, Gao XH, Willard B, Hatzoglou M, Banerjee R, Kabil O. Hydrogen sulfide modulates eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation status in the integrated stress-response pathway. J Biol Chem. 2017;292(32):13143–53. https://doi.org/10.1074/jbc.M117.778654.
CAS
Article
PubMed
PubMed Central
Google Scholar
Aneja R, Odoms K, Dunsmore K, Shanley TP, Wong HR. Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J Immunol. 2006;177(10):7184–92. https://doi.org/10.4049/jimmunol.177.10.7184.
CAS
Article
PubMed
Google Scholar
Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000;6(4):435–42. https://doi.org/10.1038/74697.
CAS
Article
PubMed
Google Scholar
Yurinskaya M, Zatsepina OG, Vinokurov MG, Bobkova NV, Garbuz DG, Morozov AV, et al. The fate of exogenous human HSP70 introduced into animal cells by different means. Curr Drug Deliv. 2015;12(5):524–32.
CAS
Article
PubMed
Google Scholar
Pockley AG, Henderson B. Extracellular cell stress (Heat shock) proteins—immune responses and disease: an overview. Philos Trans R Soc Lond Ser B Biol Sci. 2018;373(1738):20160522. https://doi.org/10.1098/rstb.2016.0522.
CAS
Article
Google Scholar
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical biology of H2S signaling through persulfidation. Chem Rev. 2018;118(3):1253–337. https://doi.org/10.1021/acs.chemrev.7b00205.
CAS
Article
PubMed
Google Scholar
Hulina A, Grdic Rajkovic M, Jaksic Despot D, Jelic D, Dojder A, Cepelak I, et al. Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells. Cell Stress Chaperones. 2018;23(3):373–84. https://doi.org/10.1007/s12192-017-0847-0.
CAS
Article
PubMed
Google Scholar
Lee KH, Jeong J, Yoo CG. Positive feedback regulation of heat shock protein 70 (Hsp70) is mediated through toll-like receptor 4-PI3K/Akt-glycogen synthase kinase-3beta pathway. Exp Cell Res. 2013;319(1):88–95. https://doi.org/10.1016/j.yexcr.2012.09.018.
CAS
Article
PubMed
Google Scholar
Du M, Yuan L, Tan X, Huang D, Wang X, Zheng Z, et al. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nat Commun. 2017;8(1):2049. https://doi.org/10.1038/s41467-017-02229-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ji K, Xue L, Cheng J, Bai Y. Preconditioning of H2S inhalation protects against cerebral ischemia/reperfusion injury by induction of HSP70 through PI3K/Akt/Nrf2 pathway. Brain Res Bull. 2016;121:68–74. https://doi.org/10.1016/j.brainresbull.2015.12.007.
CAS
Article
PubMed
Google Scholar