H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells



Hydrogen sulfide donors reduce inflammatory signaling in vitro and in vivo. The biological effect mediated by H2S donors depends on the kinetics of the gas release from the donor molecule. However, the molecular mechanisms of H2S-induced immunomodulation were poorly addressed. Here, we studied the effect of two different hydrogen sulfide (H2S)-producing agents on the generation of the LPS-induced inflammatory mediators. Importantly, we investigated the transcriptomic changes that take place in human cells after the LPS challenge, combined with the pretreatment with a slow-releasing H2S donor-GYY4137.


We investigated the effects of GYY4137 and sodium hydrosulfide on the release of proinflammatory molecules such as ROS, NO and TNF-α from LPS-treated human SH-SY5Y neuroblastoma and the THP-1 promonocytic cell lines. Transcriptomic and RT-qPCR studies using THP-1 cells were performed to monitor the effects of the GYY4137 on multiple signaling pathways, including various immune-related and proinflammatory genes after combined action of LPS and GYY4137.


The GYY4137 and sodium hydrosulfide differed in the ability to reduce the production of the LPS-evoked proinflammatory mediators. The pre-treatment with GYY4137 resulted in a drastic down-regulation of many TNF-α effectors that are induced by LPS treatment in THP-1 cells. Furthermore, GYY4137 pretreatment of LPS-exposed cells ameliorates the LPS-mediated induction of multiple pro-inflammatory genes and decreases expression of immunoproteasome genes. Besides, in these experiments we detected the up-regulation of several important pathways that are inhibited by LPS.


Based on the obtained results we believe that our transcriptomic analysis significantly contributes to the understanding of the molecular mechanisms of anti-inflammatory and cytoprotective activity of hydrogen sulfide donors, and highlights their potential against LPS challenges and other forms of inflammation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Munford RS. Endotoxemia-menace, marker, or mistake? J Leukoc Biol. 2016;100(4):687–98. https://doi.org/10.1189/jlb.3RU0316-151R.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Martins IJ. Overnutrition determines LPS regulation of mycotoxin induced neurotoxicity in neurodegenerative diseases. Int J Mol Sci. 2015;16(12):29554–73. https://doi.org/10.3390/ijms161226190.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wang YW, Zhou Q, Zhang X, Qian QQ, Xu JW, Ni PF, et al. Mild endoplasmic reticulum stress ameliorates lipopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. J Neuroinflamm. 2017;14(1):233. https://doi.org/10.1186/s12974-017-1002-7.

    CAS  Article  Google Scholar 

  4. 4.

    Kimura H. Physiological roles of hydrogen sulfide and polysulfides. In: Moore P, Whiteman M, editors. Chemistry, biochemistry and pharmacology of hydrogen sulfide. Handbook of experimental pharmacology, vol. 230. Springer, Cham;2015. p. 61–81. https://doi.org/10.1007/978-3-319-18144-8_3.

  5. 5.

    Rose P, Dymock BW, Moore PK. GYY4137, a novel water-soluble, H2S-releasing molecule. Methods Enzymol. 2015;554:143–67. https://doi.org/10.1016/bs.mie.2014.11.014.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal. 2010;12(10):1147–54. https://doi.org/10.1089/ars.2009.2899.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Li L, Fox B, Keeble J, Salto-Tellez M, Winyard PG, Wood ME, et al. The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J Cell Mol Med. 2013;17(3):365–76. https://doi.org/10.1111/jcmm.12016.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kaya-Yasar Y, Karaman Y, Bozkurt TE, Onder SC, Sahin-Erdemli I. Effects of intranasal treatment with slow (GYY4137) and rapid (NaHS) donors of hydrogen sulfide in lipopolysaccharide-induced airway inflammation in mice. Pulm Pharmacol Ther. 2017;45:170–80. https://doi.org/10.1016/j.pupt.2017.06.006.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Meng G, Wang J, Xiao Y, Bai W, Xie L, Shan L, et al. GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats. J Biomed Res. 2015;29(3):203–13. https://doi.org/10.7555/jbr.28.20140037.

    Article  PubMed  Google Scholar 

  10. 10.

    Bobkova NV, Garbuz DG, Nesterova I, Medvinskaya N, Samokhin A, Alexandrova I, et al. Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer’s disease. J Alzheimer’s Dis. 2014;38(2):425–35. https://doi.org/10.3233/jad-130779.

    Article  Google Scholar 

  11. 11.

    Bobkova NV, Evgen'ev M, Garbuz DG, Kulikov AM, Morozov A, Samokhin A, et al. Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. Proc Natl Acad Sci USA. 2015;112(52):16006–11. https://doi.org/10.1073/pnas.1516131112.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Lu Z, Zhao T, Tao L, Yu Q, Yang Y, Cheng J, et al. Cystathionine beta-synthase-derived hydrogen sulfide correlates with successful aging in mice. Rejuvenation Res. 2019. https://doi.org/10.1089/rej.2018.2166.

    Article  PubMed  Google Scholar 

  13. 13.

    Gerasimova E, Lebedeva J, Yakovlev A, Zefirov A, Giniatullin R, Sitdikova G. Mechanisms of hydrogen sulfide (H2S) action on synaptic transmission at the mouse neuromuscular junction. Neuroscience. 2015;303:577–85. https://doi.org/10.1016/j.neuroscience.2015.07.036.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC, Marathe GK. Sepsis: in search of cure. Inflamm Res. 2016;65(8):587–602. https://doi.org/10.1007/s00011-016-0937-y.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Petrushanko IY, Melnikova EV, Yurinskaya MM, Vinokurov MG, Suslikov AV, Mitkevich VA, et al. Influence of the donor of hydrogen sulfide GYY4137 on the activation of human neutrophils by E. coli lipopolysaccharides. Mol Biol. 2019;53(1):101–8. https://doi.org/10.1134/s0026898419010130.

    CAS  Article  Google Scholar 

  16. 16.

    Rozhkova E, Yurinskaya M, Zatsepina O, Garbuz D, Karpov V, Surkov S, et al. Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann N Y Acad Sci. 2010;1197:94–107. https://doi.org/10.1111/j.1749-6632.2009.05375.x.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Yurinskaya MM, Kochetkova OY, Shabarchina LI, Antonova OY, Suslikov AV, Evgen'ev MB, et al. Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFalpha in human phagocytes. Cell Stress Chaperones. 2017;22(1):163–71. https://doi.org/10.1007/s12192-016-0743-z.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Yurinskaya MM, Mit'kevich VA, Evgen'ev MB, Makarov AA, Vinokurov MG. Heat-shock protein HSP70 reduces the secretion of TNFalpha by neuroblastoma cells and human monocytes induced with beta-amyloid peptides. Mol Biol. 2016;50(6):1053–6. https://doi.org/10.7868/s0026898416060239.

    CAS  Article  Google Scholar 

  19. 19.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–200. https://doi.org/10.1093/bioinformatics/btu170.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–211. https://doi.org/10.1093/bioinformatics/bts635.

    CAS  Article  Google Scholar 

  21. 21.

    Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30. https://doi.org/10.1093/bioinformatics/btt656.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5. https://doi.org/10.1093/bioinformatics/bts356.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Krasnov GS, Dmitriev AA, Kudryavtseva AV, Shargunov AV, Karpov DS, Uroshlev LA, et al. PPLine: an automated pipeline for SNP, SAP, and splice variant detection in the context of proteogenomics. J Proteom Res. 2015;14(9):3729–37. https://doi.org/10.1021/acs.jproteome.5b00490.

    CAS  Article  Google Scholar 

  24. 24.

    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.

    CAS  Article  Google Scholar 

  25. 25.

    Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ferrington DA, Gregerson DS. Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci. 2012;109:75–112. https://doi.org/10.1016/b978-0-12-397863-9.00003-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Pan W, Kang Y. Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. Int Urol Nephrol. 2018;50(2):289–99. https://doi.org/10.1007/s11255-017-1689-5.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines. 2017;5(4):34–75. https://doi.org/10.3390/vaccines5040034.

    CAS  Article  PubMed Central  Google Scholar 

  29. 29.

    Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40. https://doi.org/10.1002/jcp.26429.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Chen LS, Singh SP, Schuster M, Grinenko T, Bornstein SR, Kanczkowski W. RNA-seq analysis of LPS-induced transcriptional changes and its possible implications for the adrenal gland dysregulation during sepsis. J Steroid Biochem Mol Biol. 2019;191:105360. https://doi.org/10.1016/j.jsbmb.2019.04.009.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Kim SJ, Kim HM. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep. 2017;50(2):55–7. https://doi.org/10.5483/bmbrep.2017.50.2.011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Pfeiffer JR, McAvoy BL, Fecteau RE, Deleault KM, Brooks SA. CARHSP1 is required for effective tumor necrosis factor alpha mRNA stabilization and localizes to processing bodies and exosomes. Mol Cell Biol. 2011;31(2):277–86. https://doi.org/10.1128/mcb.00775-10.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Mouzaoui S, Rahim I, Djerdjouri B. Aminoguanidine and curcumin attenuated tumor necrosis factor (TNF)-alpha-induced oxidative stress, colitis and hepatotoxicity in mice. Int Immunopharmacol. 2012;12(1):302–11. https://doi.org/10.1016/j.intimp.2011.10.010.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26(4):249–61. https://doi.org/10.1016/j.tcb.2015.12.002.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Sakuma S, Minamino S, Takase M, Ishiyama Y, Hosokura H, Kohda T, et al. Hydrogen sulfide donor GYY4137 suppresses proliferation of human colorectal cancer Caco-2 cells by inducing both cell cycle arrest and cell death. Heliyon. 2019;5(8):e02244. https://doi.org/10.1016/j.heliyon.2019.e02244.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Investig. 2006;86(1):9–22. https://doi.org/10.1038/labinvest.3700366.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Reis J, Guan XQ, Kisselev AF, Papasian CJ, Qureshi AA, Morrison DC, et al. LPS-induced formation of immunoproteasomes: TNF-alpha and nitric oxide production are regulated by altered composition of proteasome-active sites. Cell Biochem Biophys. 2011;60(1–2):77–88. https://doi.org/10.1007/s12013-011-9182-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Shen J, Reis J, Morrison DC, Papasian C, Raghavakaimal S, Kolbert C, et al. Key inflammatory signaling pathways are regulated by the proteasome. Shock. 2006;25(5):472–84. https://doi.org/10.1097/01.shk.0000209554.46704.64.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Kustanova GA, Murashev AN, Karpov VL, Margulis BA, Guzhova IV, Prokhorenko IR, et al. Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress Chaperones. 2006;11(3):276–86. https://doi.org/10.1379/csc-195r.1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Yurinskaya MM, Mitkevich VA, Kozin SA, Evgen'ev MB, Makarov AA, Vinokurov MG. HSP70 protects human neuroblastoma cells from apoptosis and oxidative stress induced by amyloid peptide isoAsp7-Abeta(1–42). Cell Death Dis. 2015;6:e1977. https://doi.org/10.1038/cddis.2015.336.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Evgen'ev MB, Krasnov GS, Nesterova IV, Garbuz DG, Karpov VL, Morozov AV, et al. Molecular mechanisms underlying neuroprotective effect of intranasal administration of human Hsp70 in mouse model of Alzheimer’s disease. J Alzheimer’s Dis. 2017;59(4):1415–26. https://doi.org/10.3233/jad-170398.

    CAS  Article  Google Scholar 

  42. 42.

    Yadav V, Gao XH, Willard B, Hatzoglou M, Banerjee R, Kabil O. Hydrogen sulfide modulates eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation status in the integrated stress-response pathway. J Biol Chem. 2017;292(32):13143–53. https://doi.org/10.1074/jbc.M117.778654.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Aneja R, Odoms K, Dunsmore K, Shanley TP, Wong HR. Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J Immunol. 2006;177(10):7184–92. https://doi.org/10.4049/jimmunol.177.10.7184.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000;6(4):435–42. https://doi.org/10.1038/74697.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Yurinskaya M, Zatsepina OG, Vinokurov MG, Bobkova NV, Garbuz DG, Morozov AV, et al. The fate of exogenous human HSP70 introduced into animal cells by different means. Curr Drug Deliv. 2015;12(5):524–32.

    CAS  Article  Google Scholar 

  46. 46.

    Pockley AG, Henderson B. Extracellular cell stress (Heat shock) proteins—immune responses and disease: an overview. Philos Trans R Soc Lond Ser B Biol Sci. 2018;373(1738):20160522. https://doi.org/10.1098/rstb.2016.0522.

    CAS  Article  Google Scholar 

  47. 47.

    Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical biology of H2S signaling through persulfidation. Chem Rev. 2018;118(3):1253–337. https://doi.org/10.1021/acs.chemrev.7b00205.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Hulina A, Grdic Rajkovic M, Jaksic Despot D, Jelic D, Dojder A, Cepelak I, et al. Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells. Cell Stress Chaperones. 2018;23(3):373–84. https://doi.org/10.1007/s12192-017-0847-0.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Lee KH, Jeong J, Yoo CG. Positive feedback regulation of heat shock protein 70 (Hsp70) is mediated through toll-like receptor 4-PI3K/Akt-glycogen synthase kinase-3beta pathway. Exp Cell Res. 2013;319(1):88–95. https://doi.org/10.1016/j.yexcr.2012.09.018.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Du M, Yuan L, Tan X, Huang D, Wang X, Zheng Z, et al. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nat Commun. 2017;8(1):2049. https://doi.org/10.1038/s41467-017-02229-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Ji K, Xue L, Cheng J, Bai Y. Preconditioning of H2S inhalation protects against cerebral ischemia/reperfusion injury by induction of HSP70 through PI3K/Akt/Nrf2 pathway. Brain Res Bull. 2016;121:68–74. https://doi.org/10.1016/j.brainresbull.2015.12.007.

    CAS  Article  PubMed  Google Scholar 

Download references


RNA sequencing was performed using the equipment of the Engelhardt Institute of Molecular Biology RAS “Genome” center (https://www.eimb.ru/rus/ckp/ccu_genome_c.php). This work has been supported by Grant of Russian Science Foundation No 17-74-30030 and Russian grant Program for Basic Science No 19-04-00109.

Author information




MY and MV performed all experiments with both human cell cultures; GK and AR bioinformatic analysis of the transcriptome data; DK performed RNA isolation and RTPCR studies; OZ and LC isolated RNA and prepared libraries for transcriptomic analysis; SF prepared libraries and performed RTPCR studies; AM—Western blot analysis and proteasome studies, wrote the paper; ME—designed the research, wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. B. Evgen’ev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Anatoliy Kubyshkin.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yurinskaya, M.M., Krasnov, G.S., Kulikova, D.A. et al. H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm. Res. 69, 481–495 (2020). https://doi.org/10.1007/s00011-020-01329-x

Download citation


  • H2S donors
  • LPS challenge
  • Pro-inflammatory pathways
  • Hsps genes
  • Transcriptome