Skip to main content

Advertisement

Log in

Macrophage migration inhibitory factor (MIF) controls cytokine release during respiratory syncytial virus infection in macrophages

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Respiratory syncytial virus (RSV) is the major cause of infection in children up to 2 years old and reinfection is very common among patients. Tissue damage in the lung caused by RSV leads to an immune response and infected cells activate multiple signaling pathways and massive production of inflammatory mediators like macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. Therefore, we sought to investigate the role of MIF during RSV infection in macrophages.

Methods

We evaluated MIF expression in BALB/c mice-derived macrophages stimulated with different concentrations of RSV by Western blot and real-time PCR. Additionally, different inhibitors of signaling pathways and ROS were used to evaluate their importance for MIF expression. Furthermore, we used a specific MIF inhibitor, ISO-1, to evaluate the role of MIF in viral clearance and in RSV-induced TNF-α, MCP-1 and IL-10 release from macrophages.

Results

We showed that RSV induces MIF expression dependently of ROS, 5-LOX, COX and PI3K activation. Moreover, viral replication is necessary for RSV-triggered MIF expression. Differently, p38 MAPK in only partially needed for RSV-induced MIF expression. In addition, MIF is important for the release of TNF-α, MCP-1 and IL-10 triggered by RSV in macrophages.

Conclusions

In conclusion, we demonstrate that MIF is expressed during RSV infection and controls the release of pro-inflammatory cytokines from macrophages in an in vitro model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borchers AT, Chang C, Gershwin ME, et al. Respiratory syncytial virus—a comprehensive review. Clin Rev Allergy Immunol. 2013;45(3):331–79.

    Article  CAS  Google Scholar 

  2. Johansson C. Respiratory syncytial virus infection: an innate perspective. F100Res. 2016;5:2898.

    Article  Google Scholar 

  3. Blanken MO, Rovers MM, Molenaar JM, et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med. 2013;368(19):1791–9.

    Article  CAS  Google Scholar 

  4. Glezen WP, Taber LH, Frank AL, et al. Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child. 1986;140(6):543–6.

    CAS  PubMed  Google Scholar 

  5. Selwyn BJ, Coordinated Data Group of BOSTID Researchers. The epidemiology of acute respiratory tract infection in young children: comparison of findings from several developing countries. Rev Infect Dis. 1990;12(Suppl 8):S870–88.

    Article  Google Scholar 

  6. Garenne M, Ronsmans C, Campbell H. The magnitude of mortality from acute respiratory infections in children under 5 years in developing countries. World Health Stat Q. 1992;45(2–3):180–91.

    CAS  PubMed  Google Scholar 

  7. Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev. 2017;30(1):277–319.

    Article  CAS  Google Scholar 

  8. Lloyd CM, Marsland BJ. Lung homeostasis: influence of age, microbes, and the immune system. Immunity. 2017;46(4):549–61.

    Article  CAS  Google Scholar 

  9. Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev. 2009;227(1):75–86.

    Article  CAS  Google Scholar 

  10. Kim TH, Lee HK. Innate immune recognition of respiratory syncytial virus infection. BMB Rep. 2014;47(4):184–91.

    Article  Google Scholar 

  11. Bueno SM, González PA, Pacheco R, et al. Host immunity during RSV pathogenesis. Int Immunopharmacol. 2008;8(10):1320–9.

    Article  CAS  Google Scholar 

  12. Noah TL, Becker S. Respiratory syncytial virus-induced cytokine production by a human bronchial epithelial cell line. Am J Physiol. 1993;265(5 Pt1):L472–8.

    CAS  PubMed  Google Scholar 

  13. Xie J, Yang L, Tian L, et al. Macrophage migration inhibitor factor upregulates MCP-1 expression in an autocrine manner in hepatocytes during acute mouse liver injury. Sci Rep. 2016;8(6):27665.

    Article  Google Scholar 

  14. Sheeran P, Jafri H, Carubelli C, et al. Elevated cytokine concentrations in the nasopharyngeal and tracheal secretions of children with respiratory syncytial virus disease. Pediatr Infect Dis J. 1999;18(2):115–22.

    Article  CAS  Google Scholar 

  15. Kurt-Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol. 2000;1(5):398–401.

    Article  CAS  Google Scholar 

  16. Nguyen TH, Maltby S, Simpson JL, et al. TNF-α and macrophages are critical for respiratory syncytial virus-induced exacerbations in a mouse model of allergic airways disease. J Immunol. 2016;196(9):3547–58.

    Article  CAS  Google Scholar 

  17. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3(10):791–800.

    Article  CAS  Google Scholar 

  18. Baugh JA, Bucala R. Macrophage migration inhibitory factor. Crit Care Med. 2002;30(1 Supp):S27–35.

    Article  CAS  Google Scholar 

  19. Bernhagen J, Mitchell RA, Calandra T, et al. Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF). Biochemistry. 1994;33(47):14144–55.

    Article  CAS  Google Scholar 

  20. Mitchell RA, Metz CN, Peng T, et al. Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem. 1999;274(25):18100–6.

    Article  CAS  Google Scholar 

  21. Leng L, Metz CN, Fang Y, et al. MIF signal transduction initiated by binding to CD74. J Exp Med. 2003;197(11):1467–76.

    Article  CAS  Google Scholar 

  22. Chuang YC, Su WH, Lei HY, et al. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation. PLoS One. 2012;7(5):e37613.

    Article  CAS  Google Scholar 

  23. Magalhães ES, Mourao-Sa DS, Vieira-de-Abreu A, et al. Macrophage migration inhibitory factor is essential for allergic asthma but not for Th2 differentiation. Eur J Immunol. 2007;37(4):1097–106.

    Article  Google Scholar 

  24. Paiva CN, Arras RH, Magalhães ES, et al. Migration inhibitory factor (MIF) released by macrophages upon recognition of immune complexes is critical to inflammation in Arthus reaction. J Leukoc Biol. 2009;85(5):855–61.

    Article  CAS  Google Scholar 

  25. de Souza HS, Tortori CA, Lintomen L, et al. Macrophage migration inhibitory factor promotes eosinophil accumulation and tissue remodeling in eosinophilic esophagitis. Mucosal Immunol. 2015;8(5):1154–65.

    Article  Google Scholar 

  26. Bozza M, Satoskar AR, Lin G, et al. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med. 1999;189(2):341–6.

    Article  CAS  Google Scholar 

  27. Calandra T, Echtenacher B, Roy DL, et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med. 2000;6(2):164–70.

    Article  CAS  Google Scholar 

  28. Suzuki T, Ogata A, Tashiro K, et al. Japanese encephalitis virus up-regulates expression of macrophage migration inhibitory factor (MIF) mRNA in the mouse brain. Biochim Biophys Acta. 2000;1517(1):100–6.

    Article  CAS  Google Scholar 

  29. Satoskar AR, Bozza M, Sosa MR, et al. Migration-inhibitory factor gene-deficient mice are susceptible to cutaneous Leishmania major infection. Infect Immun. 2001;69(2):906–11.

    Article  CAS  Google Scholar 

  30. Bacher M, Eickmann M, Schrader J, et al. Human cytomegalovirus-mediated induction of MIF in fibroblasts. Virology. 2002;299(1):32–7.

    Article  CAS  Google Scholar 

  31. Magalhães ES, Paiva CN, Souza HS, et al. Macrophage migration inhibitory factor is critical to interleukin-5-driven eosinophilopoiesis and tissue eosinophilia triggered by Schistosoma mansoni infection. FASEB J. 2009;23(4):1262–71.

    Article  Google Scholar 

  32. Cavalcanti MG, Mesquita JS, Madi K, et al. MIF participates in Toxoplasma gondii-induced pathology following oral infection. PLoS One. 2011;6(9):e25259.

    Article  CAS  Google Scholar 

  33. Hou XQ, Gao YW, Yang ST, et al. Role of macrophage migration inhibitory factor in influenza H5N1 virus pneumonia. Acta Virol. 2009;53(4):225–31.

    Article  CAS  Google Scholar 

  34. Arndt U, Wennemuth G, Barth P, et al. Release of macrophage migration inhibitory factor and CXCL8/interleukin-8 from lung epithelial cells rendered necrotic by influenza A virus infection. J Virol. 2002;76(18):9298–306.

    Article  CAS  Google Scholar 

  35. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    Article  CAS  Google Scholar 

  36. Okabe Y, Medzhitov R. Tissue biology perspective on macrophages. Nat Immunol. 2016;17(1):9–17.

    Article  CAS  Google Scholar 

  37. Calandra T, Bernhagen J, Mitchell RA, et al. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med. 1994;179(6):1895–902.

    Article  CAS  Google Scholar 

  38. Kim JH, Lee J, Bae SJ, et al. NADPH oxidase 4 is required for the generation of macrophage migration inhibitory factor and host defense against Toxoplasma gondii infection. Sci Rep. 2017;7(1):6361.

    Article  Google Scholar 

  39. Behera AK, Kumar M, Matsuse H, et al. Respiratory syncytial virus induces the expression of 5-lipoxygenase and endothelin-1 in bronchial epithelial cells. Biochem Biophys Res Commun. 1998;251(3):704–9.

    Article  CAS  Google Scholar 

  40. Richardson JY, Ottolini MG, Pletneva L, et al. Respiratory syncytial virus (RSV) infection induces cyclooxygenase 2: a potential target for RSV therapy. J Immunol. 2005;174(7):4356–64.

    Article  CAS  Google Scholar 

  41. Dave M, Islam ABMMK, Jensen RV, et al. Proteomic analysis shows constitutive secretion of MIF and p53-associated activity of COX-2(−/−) lung fibroblasts. Genom Proteom Bioinform. 2017;15(6):339–51.

    Article  Google Scholar 

  42. Graham BS. Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol Rev. 2011;239(1):149–66.

    Article  CAS  Google Scholar 

  43. Munir S, Hillyer P, Le Nouën C, et al. Respiratory syncytial virus interferon antagonist NS1 protein suppresses and skews the human T lymphocyte response. PLoS Pathog. 2011;7(4):e1001336.

    Article  CAS  Google Scholar 

  44. de Jong YP, Abadia-Molina AC, Satoskar AR, et al. Development of chronic colitis is dependent on the cytokine MIF. Nat Immunol. 2001;2(11):1061–6.

    Article  Google Scholar 

  45. Santos LL, Morand EF. The role of macrophage migration inhibitory factor in the inflammatory immune response and rheumatoid arthritis. Wien Med Wochenschr. 2006;156(1–2):11–8.

    Article  Google Scholar 

  46. Kimura K, Nagaki M, Nishihira J, Satake S, Kuwata K, Moriwaki H. Role of macrophage migration inhibitory factor in hepatitis B virus-specific cytotoxic-T-lymphocyte-induced liver injury. Clin Vaccine Immunol. 2006;13(3):415–9.

    Article  Google Scholar 

  47. Assunção-Miranda I, Amaral FA, Bozza FA, et al. Contribution of macrophage migration inhibitory factor to the pathogenesis of dengue virus infection. FASEB J. 2010;24(1):218–28.

    Article  Google Scholar 

  48. Assunção-Miranda I, Bozza MT, Da Poian AT. Pro-inflammatory response resulting from sindbis virus infection of human macrophages: implications for the pathogenesis of viral arthritis. J Med Virol. 2010;82(1):164–74.

    Article  Google Scholar 

  49. Regis EG, Barreto-de-Souza V, Morgado MG, et al. Elevated levels of macrophage migration inhibitory factor (MIF) in the plasma of HIV-1-infected patients and in HIV-1-infected cell cultures: a relevant role on viral replication. Virology. 2010;399(1):31–8.

    Article  CAS  Google Scholar 

  50. Delaloye J, De Bruin IJ, Darling KE, et al. Increased macrophage migration inhibitory factor (MIF) plasma levels in acute HIV-1 infection. Cytokine. 2012;60(2):338–40.

    Article  CAS  Google Scholar 

  51. Huang J, Canadien V, Lam GY, et al. Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci USA. 2009;106(15):6226–31.

    Article  CAS  Google Scholar 

  52. Bae YS, Oh H, Rhee SG, et al. Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 2011;32(6):491–509.

    Article  CAS  Google Scholar 

  53. Park HS, Jung HY, Park EY, et al. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol. 2004;173(6):3589–93.

    Article  CAS  Google Scholar 

  54. Sun Y, Wang Y, Li JH, et al. Macrophage migration inhibitory factor counter-regulates dexamethasone-induced annexin 1 expression and influences the release of eicosanoids in murine macrophages. Immunology. 2013;140(2):250–8.

    Article  CAS  Google Scholar 

  55. Wang F, Wu H, Xu S, et al. Macrophage migration inhibitory factor activates cyclooxygenase 2-prostaglandin E2 in cultured spinal microglia. Neurosci Res. 2011;71(3):210–8.

    Article  CAS  Google Scholar 

  56. Carey MA, Bradbury JA, Seubert JM, et al. Contrasting effects of cyclooxygenase-1 (COX-1) and COX-2 deficiency on the host response to influenza A viral infection. J Immunol. 2005;175(10):6878–84.

    Article  CAS  Google Scholar 

  57. Lindemans CA, Coffer PJ, Schellens IM, et al. Respiratory syncytial virus inhibits granulocyte apoptosis through a phosphatidylinositol 3-kinase and NF-kappaB-dependent mechanism. J Immunol. 2006;176(9):5529–37.

    Article  CAS  Google Scholar 

  58. Funchal GA, Jaeger N, Czepielewski RS, et al. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PLoS One. 2015;10(4):e0124082.

    Article  Google Scholar 

  59. Boukhvalova MS, Prince GA, Soroush L, et al. The TLR4 agonist, monophosphoryl lipid A, attenuates the cytokine storm associated with respiratory syncytial virus vaccine-enhanced disease. Vaccine. 2006;24(23):5027–35.

    Article  CAS  Google Scholar 

  60. Dou Y, Zhao Y, Zhang ZY, et al. Respiratory syncytial virus infection induces higher Toll-like receptor-3 expression and TNF-α production than human metapneumovirus infection. PLoS One. 2013;8(9):e73488.

    Article  CAS  Google Scholar 

  61. Olszewska-Pazdrak B, Casola A, Saito T, et al. Cell-specific expression of RANTES, MCP-1, and MIP-1alpha by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus. J Virol. 1998;72(6):4756–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bacher M, Metz CN, Calandra T, et al. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci USA. 1996;93(15):7849–54.

    Article  CAS  Google Scholar 

  63. Abe R, Peng T, Sailors J, et al. Regulation of the CTL response by macrophage migration inhibitory factor. J Immunol. 2001;166(2):747–53.

    Article  CAS  Google Scholar 

  64. Gore Y, Starlets D, Maharshak N, et al. Macrophage migration inhibitory factor induces B cell survival by activation of a CD74–CD44 receptor complex. J Biol Chem. 2008;283(5):2784–92.

    Article  CAS  Google Scholar 

  65. Chuang TY, Chang HT, Chung KP, et al. High levels of serum macrophage migration inhibitory factor and interleukin 10 are associated with a rapidly fatal outcome in patients with severe sepsis. Int J Infect Dis. 2014;20:13–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Grant nr. 456282/2014-9 to Bárbara N. Porto and Grant nr. 481366/2011-3 to Renato T. Stein). Gabriela F. de Souza was recipient of a scholarship from CNPq and Stéfanie P. Muraro was recipient of a scholarship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil).

Author information

Authors and Affiliations

Authors

Contributions

BNP and GFS conceived and designed the study. GFS, SPM, APTM, LDS and AGS performed the experiments. BNP, GFS and SPM performed the statistical analysis and interpreted the data. BNP, GFS and SPM wrote the manuscript. BNP, APDS, RTS and PTB critically revised the draft. All authors contributed to the manuscript revision and approved the submitted version.

Corresponding author

Correspondence to Bárbara N. Porto.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, G.F., Muraro, S.P., Santos, L.D. et al. Macrophage migration inhibitory factor (MIF) controls cytokine release during respiratory syncytial virus infection in macrophages. Inflamm. Res. 68, 481–491 (2019). https://doi.org/10.1007/s00011-019-01233-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-019-01233-z

Keywords

Navigation