Skip to main content

Advertisement

Log in

Evaluation of neuroprotective effects of insulin on immuno-inflammatory and systemic disorders induced by kaliotoxin, a Kv1.3 channel blocker

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Kaliotoxin2 (KTX2) is a highly selective blocker of voltage-dependent potassium channels Kv1.3 containing 37 amino acid residues. It is purified from Androctonus australis scorpion venom. The binding of KTX2 to its targets is able to alter the neuronal excitability leading to neurological disorders, accompanied by an inflammatory response. In brain, activation of insulin receptor signaling pathway by insulin induces current suppression and concomitant tyrosine phosphorylation of Kv1.3 channel. The aim of this study is to evaluate the effect of insulin injected by i.c.v. route on the neuro-pathophysiological and systemic disorders induced by KTX2.

Materials and methods

Tissue damage, inflammatory response and oxidative stress biomarkers were assessed in NMRI mice at 24 h after co-injection of KTX2 and insulin by intracerebroventricular route.

Results

Obtained results revealed that the central administration of insulin prevents cerebral cortex injury, brain edema and blood–brain barrier alteration induced by KTX2, these are accompanied by significant decrease of systemic disorders including serum cytokines, inflammatory and oxidative stress markers and tissue damage.

Conclusion

These results indicate that insulin is able to reduce neuro-immunological effects and systemic disorders induced by KTX2. The neuroprotective effect of insulin may be due to its crucial role in the regulation of inflammation response and its properties to modulate the activity of Kv1.3 channels in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rodriguez de la Vega RC, Possani LD. Current views on scorpion toxins specific for K+-channels. Toxicon. 2004;43(8):865–75. https://doi.org/10.1016/j.toxicon.2004.03.022.

    Article  CAS  Google Scholar 

  2. Tytgat J, Chandy KG, Garcia ML, Gutman GA, Martin-Eauclaire MF, van der Walt JJ, et al. A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. Trends Pharmacol. Sci. 1999;20(11):444–7.

    Article  PubMed  CAS  Google Scholar 

  3. Tan PT, Veeramani A, Srinivasan KN, Ranganathan S, Brusic V. SCORPION2: a database for structure-function analysis of scorpion toxins. Toxicon. 2006;47(3):356–63. https://doi.org/10.1016/j.toxicon.2005.12.001.

    Article  PubMed  CAS  Google Scholar 

  4. Quintero-Hernandez V, Jimenez-Vargas JM, Gurrola GB, Valdivia HH, Possani LD. Scorpion venom components that affect ion-channels function. Toxicon. 2013;76:328–42. https://doi.org/10.1016/j.toxicon.2013.07.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon. 2015;93C:125–35. https://doi.org/10.1016/j.toxicon.2014.11.233.

    Article  CAS  Google Scholar 

  6. Laraba-Djebari F, Legros C, Crest M, Ceard B, Romi R, Mansuelle P, et al. The kaliotoxin family enlarged. Purification, characterization, and precursor nucleotide sequence of KTX2 from Androctonus australis venom. J Biol Chem. 1994;269(52):32835–43.

    PubMed  CAS  Google Scholar 

  7. Zachariae U, Schneider R, Velisetty P, Lange A, Seeliger D, Wacker SJ, et al. The molecular mechanism of toxin-induced conformational changes in a potassium channel: relation to C-type inactivation. Structure. 2008;16(5):747–54. https://doi.org/10.1016/j.str.2008.01.018.

    Article  PubMed  CAS  Google Scholar 

  8. Ladjel-Mendil A, Martin-Eauclaire MF, Laraba-Djebari F. Neuropathophysiological effect and immuno-inflammatory response induced by kaliotoxin of androctonus scorpion venom. Neuroimmunomodulation. 2013;20(2):99–106. https://doi.org/10.1159/000345706.

    Article  PubMed  CAS  Google Scholar 

  9. Taibi-Djennah Z, Matin-Eauclaire MF, Laraba-Djebari F. Systemic responses following brain injuries and inflammatory process activation induced by a neurotoxin of Androctonus scorpion venom. Neuroimmunomodulation. 2015. https://doi.org/10.1159/000371493.

    Article  PubMed  Google Scholar 

  10. Sifi N, Martin-Eauclaire MF, Laraba-Djebari F. K(+) channel blocker-induced neuroinflammatory response and neurological disorders: immunomodulatory effects of astaxanthin. Inflamm. Res. 2016;65(8):623–34. https://doi.org/10.1007/s00011-016-0945-y.

    Article  PubMed  CAS  Google Scholar 

  11. Bessone R, Martin-Eauclaire MF, Crest M, Mourre C. Heterogeneous competition of Kv1 channel toxins with kaliotoxin for binding in rat brain: autoradiographic analysis. Neurochem. Int. 2004;45(7):1039–47. https://doi.org/10.1016/j.neuint.2004.05.006.

    Article  PubMed  CAS  Google Scholar 

  12. Mourre C, Chernova MN, Martin-Eauclaire MF, Bessone R, Jacquet G, Gola M, et al. Distribution in rat brain of binding sites of kaliotoxin, a blocker of Kv1.1 and Kv1.3 alpha-subunits. J. Pharmacol. Exp. Ther. 1999;291(3):943–52.

    PubMed  CAS  Google Scholar 

  13. Ladjel-Mendil A, Martin-Eauclaire MF, Laraba-Djebari F. Neuro-modulation of immuno-endocrine response induced by kaliotoxin of Androctonus scorpion venom. J. Biochem. Mol. Toxicol. 2016;30(12):580–7. https://doi.org/10.1002/jbt.21824.

    Article  PubMed  CAS  Google Scholar 

  14. Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S. Systemic inflammatory response following acute traumatic brain injury. Front Biosci (Landmark Ed). 2009;14:3795–813.

    Article  CAS  Google Scholar 

  15. Jacome T, Tatum D. Systemic inflammatory response syndrome (SIRS) score independently predicts poor outcome in isolated traumatic brain injury. Neurocrit. Care. 2018;28(1):110–6. https://doi.org/10.1007/s12028-017-0410-y.

    Article  PubMed  Google Scholar 

  16. Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272(5656):827–9.

    Article  PubMed  CAS  Google Scholar 

  17. Fadool DA, Tucker K, Phillips JJ, Simmen JA. Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3. J. Neurophysiol. 2000;83(4):2332–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Werner H, LeRoith D. Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects. Eur. Neuropsychopharmacol. 2014;24(12):1947–53. https://doi.org/10.1016/j.euroneuro.2014.01.020.

    Article  PubMed  CAS  Google Scholar 

  19. Franklin JL, Bennett WL, Messina JL. Insulin attenuates TNFα-induced hemopexin mRNA: an anti-inflammatory action of insulin in rat H4IIE hepatoma cells. Biochem. Biophys. Rep. 2017;9:211–216

    PubMed  PubMed Central  Google Scholar 

  20. Andreelli F, Jacquier D, Keufer F. Propriétés anti-inflammatoires de l’insuline chez les patients en réanimation. Réanimation. 2006;15(6):467–73.

    Article  Google Scholar 

  21. Devos P. Effets propres de l’insuline par rapport au contrôle glycémique. Réanimation. 2008;17:8–11.

    Article  Google Scholar 

  22. Bougle A, Annane D. Effect of insulin: from the cell to the total body. Ann. Fr. Anesth. Reanim. 2009;28(5):e193-9. https://doi.org/10.1016/j.annfar.2009.02.029.

    Article  PubMed  Google Scholar 

  23. Deng HP, Chai JK. The effects and mechanisms of insulin on systemic inflammatory response and immune cells in severe trauma, burn injury, and sepsis. Int. Immunopharmacol. 2009;9(11):1251–9. https://doi.org/10.1016/j.intimp.2009.07.009.

    Article  PubMed  CAS  Google Scholar 

  24. Rosas-Hernandez H, Ramirez M, Ramirez-Lee MA, Ali SF, Gonzalez C. Inhibition of prolactin with bromocriptine for 28 days increases blood–brain barrier permeability in the rat. Neuroscience. 2015;301:61–70. https://doi.org/10.1016/j.neuroscience.2015.05.066.

    Article  PubMed  CAS  Google Scholar 

  25. Tao X, Chen X, Hao S, Hou Z, Lu T, Sun M, et al. Protective actions of PJ34, a poly(ADP-ribose)polymerase inhibitor, on the blood–brain barrier after traumatic brain injury in mice. Neuroscience. 2015;291:26–36. https://doi.org/10.1016/j.neuroscience.2015.01.070.

    Article  PubMed  CAS  Google Scholar 

  26. Matos IM, Souza DG, Seabra DG, Freire-Maia L, Teixeira MM. Effects of tachykinin NK1 or PAF receptor blockade on the lung injury induced by scorpion venom in rats. Eur. J. Pharmacol. 1999;376(3):293–300.

    Article  PubMed  CAS  Google Scholar 

  27. Somiari SB, Somiari RI, Heckman CM, Olsen CH, Jordan RM, Russell SJ, et al. Circulating MMP2 and MMP9 in breast cancer—potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories. Int. J. Cancer. 2006;119(6):1403–11. https://doi.org/10.1002/ijc.21989.

    Article  PubMed  CAS  Google Scholar 

  28. Okada N, Ishida H, Murata N, Hashimoto D, Seyama Y, Kubota S. Matrix metalloproteinase-2 and -9 in bile as a marker of liver metastasis in colorectal cancer. Biochem. Biophys. Res. Commun. 2001;288(1):212–6. https://doi.org/10.1006/bbrc.2001.5741.

    Article  PubMed  CAS  Google Scholar 

  29. Coelho FM, Pessini AC, Coelho AM, Pinho VS, Souza DG, Arantes EC, et al. Platelet activating factor receptors drive CXC chemokine production, neutrophil influx and edema formation in the lungs of mice injected with Tityus serrulatus venom. Toxicon. 2007;50(3):420–7. https://doi.org/10.1016/j.toxicon.2007.04.009.

    Article  PubMed  CAS  Google Scholar 

  30. Van Oosterhout AJ, van Ark I, Hofman G, Van Der Linde HJ, Fattah D, Nijkamp FP. Role of interleukin-5 and substance P in development of airway hyperreactivity to histamine in guinea-pigs. Eur. Respir. J. 1996;9(3):493–9.

    Article  PubMed  Google Scholar 

  31. Sun XC, Li WB, Li SQ, Li QJ, Chen XL, Ai J. Intrathecal injection of Sar9, Met(O2)11-substance P, neurokinin-1 receptor agonist, increases nitric oxide synthase expression and nitric oxide production in the rat spinal cord. Acta Physiol. Sin. 2003;55(6):677–83.

    CAS  Google Scholar 

  32. Moreno I, Pichardo S, Jos A, Gomez-Amores L, Mate A, Vazquez CM, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon. 2005;45(4):395–402. https://doi.org/10.1016/j.toxicon.2004.11.001.

    Article  PubMed  CAS  Google Scholar 

  33. Sampaio SC, Sousa-e-Silva MC, Borelli P, Curi R, Cury Y. Crotalus durissus terrificus snake venom regulates macrophage metabolism and function. J. Leukoc. Biol. 2001;70(4):551–8.

    PubMed  CAS  Google Scholar 

  34. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    Article  PubMed  CAS  Google Scholar 

  35. Ellman GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959;82(1):70–7.

    Article  PubMed  CAS  Google Scholar 

  36. Dardiotis E, Karanikas V, Paterakis K, Fountas K, Hadjigeorgiou GM. Traumatic brain injury and inflammation: emerging role of innate and adaptive immunity. In: Agrawal A, editor. Brain injury-pathogenesis, monitoring, recovery and management. Rijeka: InTech; 2012. p. 23–38.

    Google Scholar 

  37. Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F. Scorpion venom interactions with the immune system. In: Gopalakrishnakone P, editor. Toxinology: scorpion venoms. Dordrecht: Springer; 2013. p. 1–18. https://doi.org/10.1007/978-94-007-6647-1_3-1.

    Chapter  Google Scholar 

  38. Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg. Microb. Infect. 2013;2(9):e60. https://doi.org/10.1038/emi.2013.58.

    Article  CAS  Google Scholar 

  39. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med. 2007;13(10):1173–5. https://doi.org/10.1038/nm1651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD. The blood–brain barrier in neuroinflammatory diseases. Pharmacol. Rev. 1997;49(2):143–55.

    PubMed  Google Scholar 

  41. Laraba-Djebari F, Adi-Bessalem S, Hammoudi-Triki D. Scorpion venoms: pathogenesis and biotherapies. In: Gopalakrishnakone P, editor. Toxinology: scorpion venoms. Dordrecht: Springer; 2013. p. 1–21. https://doi.org/10.1007/978-94-007-6647-1_2-1.

    Chapter  Google Scholar 

  42. Chen Q, Jin M, Yang F, Zhu J, Xiao Q, Zhang L. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediat. Inflamm. 2013;2013:928315. https://doi.org/10.1155/2013/928315.

    Article  CAS  Google Scholar 

  43. Kossakowska AE, Edwards DR, Prusinkiewicz C, Zhang MC, Guo D, Urbanski SJ, et al. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin’s lymphomas. Blood. 1999;94(6):2080–9.

    PubMed  CAS  Google Scholar 

  44. Jeschke MG, Klein D, Herndon DN. Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann. Surg. 2004;239(4):553–60.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Raouraoua-Boukari R, Sami-Merah S, Hammoudi-Triki D, Martin-Eauclaire MF, Laraba-Djebari F. Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions. Neuroimmunomodulation. 2012;19(2):103–10. https://doi.org/10.1159/000330241.

    Article  PubMed  CAS  Google Scholar 

  46. Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V, et al. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;188(12):6287–99. https://doi.org/10.4049/jimmunol.1200385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Koffler M, Raskin P, Womble D, Helderman JH. Immunobiological consequence of regulation of insulin receptor on alloactivated lymphocytes in normal and obese subjects. Diabetes. 1991;40(3):364–70.

    Article  PubMed  CAS  Google Scholar 

  48. Viardot A, Grey ST, Mackay F, Chisholm D. Potential antiinflammatory role of insulin via the preferential polarization of effector T cells toward a T helper 2 phenotype. Endocrinology. 2007;148(1):346–53. https://doi.org/10.1210/en.2006-0686.

    Article  PubMed  CAS  Google Scholar 

  49. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J. Clin. Endocrinol. Metab. 2001;86(7):3257–65. https://doi.org/10.1210/jcem.86.7.7623.

    Article  PubMed  CAS  Google Scholar 

  50. Langouche L, Vanhorebeek I, Vlasselaers D, Vander Perre S, Wouters PJ, Skogstrand K, et al. Intensive insulin therapy protects the endothelium of critically ill patients. J. Clin. Investig. 2005;115(8):2277–86. https://doi.org/10.1172/JCI25385.

    Article  PubMed  CAS  Google Scholar 

  51. Klein D, Schubert T, Horch RE, Jauch KW, Jeschke MG. Insulin treatment improves hepatic morphology and function through modulation of hepatic signals after severe trauma. Ann. Surg. 2004;240(2):340–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jeschke MG, Rensing H, Klein D, Schubert T, Mautes AE, Bolder U, et al. Insulin prevents liver damage and preserves liver function in lipopolysaccharide-induced endotoxemic rats. J. Hepatol. 2005;42(6):870–9. https://doi.org/10.1016/j.jhep.2004.12.036.

    Article  PubMed  CAS  Google Scholar 

  53. Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, Doolittle ND, et al. Immunologic privilege in the central nervous system and the blood–brain barrier. J. Cereb. Blood Flow Metab. 2013;33(1):13–21. https://doi.org/10.1038/jcbfm.2012.153.

    Article  PubMed  CAS  Google Scholar 

  54. Petricevich VL. Scorpion venom and the inflammatory response. Mediat. Inflamm. 2010;2010:903295. https://doi.org/10.1155/2010/903295.

    Article  CAS  Google Scholar 

  55. Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD. Innate and adaptive immune responses of the central nervous system. Crit. Rev. Immunol. 2006;26(2):149–88.

    Article  PubMed  CAS  Google Scholar 

  56. Imhof BA, Engelhardt B, Vadas M. Novel mechanisms of the transendothelial migration of leukocytes. Trends Immunol. 2001;22(8):411–4.

    Article  PubMed  CAS  Google Scholar 

  57. Man S, Ubogu EE, Ransohoff RM. Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol. 2007;17(2):243–50. https://doi.org/10.1111/j.1750-3639.2007.00067.x.

    Article  PubMed  CAS  Google Scholar 

  58. Nguyen HX, O’Barr TJ, Anderson AJ. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J. Neurochem. 2007;102(3):900–12. https://doi.org/10.1111/j.1471-4159.2007.04643.x.

    Article  PubMed  CAS  Google Scholar 

  59. Li H, Liang J, Castrillon DH, DePinho RA, Olson EN, Liu ZP. FoxO4 regulates tumor necrosis factor alpha-directed smooth muscle cell migration by activating matrix metalloproteinase 9 gene transcription. Mol. Cell. Biol. 2007;27(7):2676–86. https://doi.org/10.1128/MCB.01748-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kothari P, Pestana R, Mesraoua R, Elchaki R, Khan KM, Dannenberg AJ, et al. IL-6-mediated induction of matrix metalloproteinase-9 is modulated by JAK-dependent IL-10 expression in macrophages. J Immunol. 2014;192(1):349–57. https://doi.org/10.4049/jimmunol.1301906.

    Article  PubMed  CAS  Google Scholar 

  61. Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, et al. Blood–brain barrier dysfunction in disorders of the developing brain. Front. Neurosci. 2015;9:40. https://doi.org/10.3389/fnins.2015.00040.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cai Y, Liu X, Chen W, Wang Z, Xu G, Zeng Y, et al. TGF-beta1 prevents blood–brain barrier damage and hemorrhagic transformation after thrombolysis in rats. Exp. Neurol. 2015;266:120–6. https://doi.org/10.1016/j.expneurol.2015.02.013.

    Article  PubMed  CAS  Google Scholar 

  63. Kanashiro A, Talbot J, Peres RS, Pinto LG, Bassi GS, Cunha TM, et al. Neutrophil recruitment and articular hyperalgesia in antigen-induced arthritis are modulated by the cholinergic anti-inflammatory pathway. Basic Clin. Pharmacol. Toxicol. 2016;119(5):453–7. https://doi.org/10.1111/bcpt.12611.

    Article  PubMed  CAS  Google Scholar 

  64. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9. https://doi.org/10.1038/nature01321.

    Article  PubMed  CAS  Google Scholar 

  65. Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017;46(6):927–42. https://doi.org/10.1016/j.immuni.2017.06.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Dianzani C, Collino M, Lombardi G, Garbarino G, Fantozzi R. Substance P increases neutrophil adhesion to human umbilical vein endothelial cells. Br. J. Pharmacol. 2003;139(6):1103–10. https://doi.org/10.1038/sj.bjp.0705344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Khorchid A, Fragoso G, Shore G, Almazan G. Catecholamine-induced oligodendrocyte cell death in culture is developmentally regulated and involves free radical generation and differential activation of caspase-3. Glia. 2002;40(3):283–99. https://doi.org/10.1002/glia.10123.

    Article  PubMed  Google Scholar 

  68. Dousset E, Carrega L, Steinberg JG, Clot-Faybesse O, Jouirou B, Sauze N, et al. Evidence that free radical generation occurs during scorpion envenomation. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP. 2005;140(2):221–6. https://doi.org/10.1016/j.cca.2005.02.003.

    Article  CAS  Google Scholar 

  69. Fatani AJ, Furman BL, Zeitlin IJ. The involvement of plasma kinins in the cardiovascular effects of Leiurus quinquestriatus scorpion venom in anaesthetised rabbits. Toxicon. 1998;36(3):523–36.

    Article  PubMed  CAS  Google Scholar 

  70. Fukuhara YD, Dellalibera-Joviliano R, Cunha FQ, Reis ML, Donadi EA. The kinin system in the envenomation caused by the Tityus serrulatus scorpion sting. Toxicol. Appl. Pharmacol. 2004;196(3):390–5. https://doi.org/10.1016/j.taap.2003.12.026.

    Article  PubMed  CAS  Google Scholar 

  71. Mielke JG, Taghibiglou C, Wang YT. Endogenous insulin signaling protects cultured neurons from oxygen-glucose deprivation-induced cell death. Neuroscience. 2006;143(1):165–73. https://doi.org/10.1016/j.neuroscience.2006.07.055.

    Article  PubMed  CAS  Google Scholar 

  72. Blazquez E, Velazquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front. Endocrinol. 2014;5:161. https://doi.org/10.3389/fendo.2014.00161.

    Article  Google Scholar 

  73. Mamik MK, Asahchop EL, Chan WF, Zhu Y, Branton WG, McKenzie BA, et al. Insulin treatment prevents neuroinflammation and neuronal injury with restored neurobehavioral function in models of HIV/AIDS neurodegeneration. J. Neurosci. 2016;36(41):10683–95. https://doi.org/10.1523/JNEUROSCI.1287-16.2016.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Laraba-Djebari.

Ethics declarations

Conflict of interest

Authors confirm that there is no conflict of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Responsible Editor: Thiago Mattar Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taibi-Djennah, Z., Martin-Eauclaire, MF. & Laraba-Djebari, F. Evaluation of neuroprotective effects of insulin on immuno-inflammatory and systemic disorders induced by kaliotoxin, a Kv1.3 channel blocker. Inflamm. Res. 67, 863–877 (2018). https://doi.org/10.1007/s00011-018-1177-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-018-1177-0

Keywords

Navigation