Inflammation Research

, Volume 67, Issue 7, pp 589–596 | Cite as

Prostaglandin E2 and IL-23 interconnects STAT3 and RoRγ pathways to initiate Th17 CD4+ T-cell development during rheumatoid arthritis

  • Janaiya S. Samuels
  • Lauren Holland
  • María López
  • Keya Meyers
  • William G. Cumbie
  • Anna McClain
  • Aleksandra Ignatowicz
  • Daryllynn Nelson
  • Rangaiah Shashidharamurthy



The chronic inflammation associated with rheumatoid arthritis (RA) leads to focal and systemic bone erosion of the joints resulting in a crippling disability. Recent reports indicate an increase in the incidence of RA in the coming years, placing a significant burden on healthcare resources. The incidence of RA is observed to be increasing with age and a significant proportion of those new cases will be aggressively erosive.


The altered physiology, due to immune disturbances, contributes towards RA pathogenesis. The imbalance of inflammatory cytokines and non-cytokine immune modulators such as prostaglandin E2 (PGE2) and IL-23-induced pathogenic IL-17, plays a crucial role in persistent inflammation and bone degradation during RA. However, the molecular mechanism of IL-23, a key cytokine, and PGE2 in the development and perpetuation of IL-17 producing effector Th17 cells is poorly understood.


This review focuses on research findings that provide insight into the contribution of PGE2 and IL-23 during the development of pathogenic Th17 cells. We also highlight the key transcriptional factors required for Th17 development and therapeutic strategies to disrupt the interaction between IL-23 and IL-17 to prevent the end-organ damage in RA.


Rheumatoid arthritis Autoinflammation Bone erosion Prostaglandin E2 IL-17 IL-23 Th17 RANKL STAT3 and RoRγ 



We thank the late Dr. Ramprasad VR Mula for his critical comments and insights into the article.

Author contributions

JS, LH, equally contributed in collecting the data and drafting the manuscript. ML, KY, WC, AM collected the data and drafted the manuscript. AI and DN collected the data. RS designed and wrote the manuscript.


This work was supported by Chief Scientific Officer Funding for MS-Biomedical thesis from PCOM, American Heart Association award [11SDG5710004] and National Institute of Allergy and Infectious Diseases [1R03 AI128254-01A1] to R.S.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


  1. 1.
    Nathan C. Immunology. Catalytic antibody bridges innate and adaptive immunity. Science. 2002;298(5601):2143–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Scutellari PN, Orzincolo C. Rheumatoid arthritis: sequences. Eur J Radiol. 1998;27(Suppl 1):S31-8.PubMedGoogle Scholar
  3. 3.
    Deighton C, O’Mahony R, Tosh J, Turner C, Rudolf M, Guideline Development G. Management of rheumatoid arthritis: summary of NICE guidance. Bmj. 2009;338:b702.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Seo SK, Choi JH, Kim YH, Kang WJ, Park HY, Suh JH, et al. 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat Med. 2004;10(10):1088–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4(3):a006049.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Nandakumar KS, Svensson L, Holmdahl R. Collagen type II-specific monoclonal antibody-induced arthritis in mice: description of the disease and the influence of age, sex, and genes. Am J Pathol. 2003;163(5):1827–37.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Vossenaar ER, Zendman AJ, Van Venrooij WJ. Citrullination, a possible functional link between susceptibility genes and rheumatoid arthritis. Arthritis Res Ther. 2004;6(1):1–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Pruijn GJ. Citrullination and carbamylation in the pathophysiology of rheumatoid arthritis. Front Immunol. 2015;6:192.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    van Venrooij WJ, van Beers JJ, Pruijn GJ. Anti-CCP antibodies: the past, the present and the future. Nat Rev Rheumatol. 2011;7(7):391–8.PubMedCrossRefGoogle Scholar
  10. 10.
    van Venrooij WJ, Vossenaar ER, Zendman AJ. Anti-CCP antibodies: the new rheumatoid factor in the serology of rheumatoid arthritis. Autoimmun Rev. 2004;3(Suppl 1):S17-9.PubMedGoogle Scholar
  11. 11.
    McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.PubMedCrossRefGoogle Scholar
  12. 12.
    Gaffen SL. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep. 2009;11(5):365–70.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ, McClanahan TK, et al. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med. 2009;206(3):535–48.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Honda T, Segi-Nishida E, Miyachi Y, Narumiya S. Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. J Exp Med. 2006;203(2):325–35.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 1999;42(5):963–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Leipe J, Grunke M, Dechant C, Reindl C, Kerzendorf U, Schulze-Koops H, et al. Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum. 2010;62(10):2876–85.PubMedCrossRefGoogle Scholar
  18. 18.
    Lubberts E, Joosten LA, Oppers B, van den Bersselaar L, Coenen-de Roo CJ, Kolls JK, et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol. 2001;167(2):1004–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Lubberts E, Koenders MI, van den Berg WB. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther. 2005;7(1):29–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203(12):2673–82.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chabaud M, Lubberts E, Joosten L, van Den Berg W, Miossec P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 2001;3(3):168–77.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Sheibanie AF, Khayrullina T, Safadi FF, Ganea D. Prostaglandin E2 exacerbates collagen-induced arthritis in mice through the inflammatory interleukin-23/interleukin-17 axis. Arthritis Rheum. 2007;56(8):2608–19.PubMedCrossRefGoogle Scholar
  23. 23.
    Myer RG, El Mezayen R, High KP. Prostaglandin E2-dependent IL-23 production in aged murine dendritic cells. Exp Gerontol. 2010;45(11):834–41.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Okano M, Sugata Y, Fujiwara T, Matsumoto R, Nishibori M, Shimizu K, et al. E prostanoid 2 (EP2)/EP4-mediated suppression of antigen-specific human T-cell responses by prostaglandin E2. Immunology. 2006;118(3):343–52.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shu J, Zhang F, Zhang L, Wei W. G protein coupled receptors signaling pathways implicate in inflammatory and immune response of rheumatoid arthritis. Inflamm Res. 2017;66(5):379–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Sakuma Y, Tanaka K, Suda M, Yasoda A, Natsui K, Tanaka I, et al. Crucial involvement of the EP4 subtype of prostaglandin E receptor in osteoclast formation by proinflammatory cytokines and lipopolysaccharide. J Bone Miner Res. 2000;15(2):218–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Mus AM, Cornelissen F, Asmawidjaja PS, van Hamburg JP, Boon L, Hendriks RW, et al. Interleukin-23 promotes Th17 differentiation by inhibiting T-bet and FoxP3 and is required for elevation of interleukin-22, but not interleukin-21, in autoimmune experimental arthritis. Arthritis Rheum. 2010;62(4):1043–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007;448(7152):484–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature. 2007;448(7152):480–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Deenick EK, Tangye SG. Autoimmunity. IL-21: a new player in Th17-cell differentiation. Immunol Cell Biol. 2007;85(7):503–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgamma function. Nature. 2008;453(7192):236–40.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature. 2010;467(7318):967–71.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–89.PubMedCrossRefGoogle Scholar
  36. 36.
    Stritesky GL, Yeh N, Kaplan MH. IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol. 2008;181(9):5948–55.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sheibanie AF, Tadmori I, Jing H, Vassiliou E, Ganea D. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J. 2004;18(11):1318–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Sheibanie AF, Yen JH, Khayrullina T, Emig F, Zhang M, Tuma R, et al. The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23–>IL-17 axis. J Immunol. 2007;178(12):8138–47.PubMedCrossRefGoogle Scholar
  39. 39.
    Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther. 2010;12(1):R29.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N, et al. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther. 2007;9(5):R96.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest. 2006;116(5):1218–22.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato C, et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci USA. 2006;103(21):8137–42.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282(13):9358–63.PubMedCrossRefGoogle Scholar
  44. 44.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585–600.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008;205(4):799–810.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kaiko GE, Horvat JC, Beagley KW, Hansbro PM. Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology. 2008;123(3):326–38.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168(11):5699–708.PubMedCrossRefGoogle Scholar
  49. 49.
    Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+ CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol. 2007;178(11):6725–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Lundy SK, Sarkar S, Tesmer LA, Fox DA. Cells of the synovium in rheumatoid arthritis. T lymphocytes. Arthritis Res Ther. 2007;9(1):202.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Smith JA, Colbert RA. Review. The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatol. 2014;66(2):231–41.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010;140(6):935–50.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Avci AB, Feist E, Burmester GR. Biologicals in rheumatoid arthritis: current and future. RMD Open. 2015;1(1):e000127.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Burmester GR, Feist E, Dorner T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. 2014;10(2):77–88.PubMedCrossRefGoogle Scholar
  55. 55.
    Nam JL, Takase-Minegishi K, Ramiro S, Chatzidionysiou K, Smolen JS, van der Heijde D, et al. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis. 2017;76(6):1113–36.PubMedCrossRefGoogle Scholar
  56. 56.
    Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001.PubMedCrossRefGoogle Scholar
  57. 57.
    Takahata M, Maher JR, Juneja SC, Inzana J, Xing L, Schwarz EM, et al. Mechanisms of bone fragility in a mouse model of glucocorticoid-treated rheumatoid arthritis: implications for insufficiency fracture risk. Arthritis Rheum. 2012;64(11):3649–59.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Molloy ES, Calabrese LH. Progressive multifocal leukoencephalopathy associated with immunosuppressive therapy in rheumatic diseases: evolving role of biologic therapies. Arthritis Rheum. 2012;64(9):3043–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Olsen NJ, Spurlock CF, Aune TM. Methotrexate induces production of IL-1 and IL-6 in the monocytic cell line U937. Arthritis Res Ther. 2014;16(1):R17.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Campa M, Mansouri B, Warren R, Menter A. A review of biologic therapies targeting IL-23 and IL-17 for use in moderate-to-severe plaque psoriasis. Dermatol Ther (Heidelb). 2016;6(1):1–12.CrossRefGoogle Scholar
  61. 61.
    Tang C, Chen S, Qian H, Huang W. Interleukin-23: as a drug target for autoimmune inflammatory diseases. Immunology. 2012;135(2):112–24.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Tzellos T, Kyrgidis A, Trigoni A, Zouboulis CC. Association of ustekinumab and briakinumab with major adverse cardiovascular events: an appraisal of meta-analyses and industry sponsored pooled analyses to date. Dermatoendocrinol. 2012;4(3):320–3.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Janaiya S. Samuels
    • 1
  • Lauren Holland
    • 1
  • María López
    • 1
  • Keya Meyers
    • 1
  • William G. Cumbie
    • 1
  • Anna McClain
    • 1
  • Aleksandra Ignatowicz
    • 1
  • Daryllynn Nelson
    • 1
  • Rangaiah Shashidharamurthy
    • 1
  1. 1.Department of Pharmaceutical Sciences, School of PharmacyPhiladelphia College of Osteopathic Medicine-Georgia CampusSuwaneeUSA

Personalised recommendations