Inflammation Research

, Volume 67, Issue 6, pp 531–538 | Cite as

IL-33 attenuates mortality by promoting IFN-γ production in sepsis

  • Qi Bao
  • Ran Lv
  • Min Lei
Original Research Paper


Objective and design

Sepsis remains a major clinical problem with high morbidity and mortality. Interleukin (IL)-33 is a recently described member of the IL-1 family that is widely expressed and functions as a new inflammatory mediator. IL-33 has been reported to protect sepsis, but the underlying mechanisms are not well-elucidated.

Materials and methods

We measured the interferon gamma (IFN-γ) production in septic mice after IL-33 treatment.


IL-33 treatment enhanced the IFN-γ level in blood and promoted mice’s survival, so the protective effects of IL-33 depend on IFN-γ. The IL-33 treatment also promoted both γδ T cells and NK cells in septic mice.


Our data showed that IL-33 attenuates mortality by promoting IFN-γ production in sepsis.


IL-33 IFN-γ γδ T cells NK cells Sepsis 



This work was supported by The Natural Science Fund of Zhejiang Province (LQ16H150001) and The Medical Science Research Foundation of Zhejiang Province (2016KYA112).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Not applicable.


  1. 1.
    Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–50.CrossRefPubMedGoogle Scholar
  2. 2.
    Riedemann NC, Guo RF, Ward PA. Novel strategies for the treatment of sepsis. Nat Med. 2003;9(5):517–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Vincent JL, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. Lancet. 2013;381(9868):774–5.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40(4):463–75.CrossRefPubMedGoogle Scholar
  5. 5.
    Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8(10):776–87.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    LaRosa SP, Opal SM. Sepsis strategies in development. Clin Chest Med. 2008;29(4):735–47, x–xi.Google Scholar
  7. 7.
    Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA Jr, Auxiliadora-Martins M, et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 2010;16(6):708–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Li S, Zhu FX, Zhao XJ, An YZ. The immunoprotective activity of interleukin-33 in mouse model of cecal ligation and puncture-induced sepsis. Immunol Lett. 2016;169:1–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Chaudry IH, Wichterman KA, Baue AE. Effect of sepsis on tissue adenine nucleotide levels. Surgery. 1979;85(2):205–11.PubMedGoogle Scholar
  10. 10.
    Crispe IN. Isolation of mouse intrahepatic lymphocytes. Curr Protoc Immunol. 2001;Chap. 3(Unit 3):21.Google Scholar
  11. 11.
    Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC, Marathe GK. Sepsis: in search of cure. Inflamm Res. 2016;65(8):587–602.CrossRefPubMedGoogle Scholar
  12. 12.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5(1):36–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock. 2001;16(2):83–96.CrossRefPubMedGoogle Scholar
  16. 16.
    Opal SM. New perspectives on immunomodulatory therapy for bacteraemia and sepsis. Int J Antimicrob Agents. 2010;36(Suppl 2):S70–3.CrossRefPubMedGoogle Scholar
  17. 17.
    Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016;274(1):330–53.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang Y, Kong BB, Yang WP, Zhao X, Zhang R. Immunomodulatory intervention with gamma interferon in mice with sepsis. Life Sci. 2017;18585–94.Google Scholar
  19. 19.
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Haraldsen G, Balogh J, Pollheimer J, Sponheim J, Kuchler AM. Interleukin-33—cytokine of dual function or novel alarmin? Trends Immunol. 2009;30(5):227–33.CrossRefPubMedGoogle Scholar
  21. 21.
    Iikura M, Suto H, Kajiwara N, Oboki K, Ohno T, Okayama Y, et al. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab Invest. 2007;87(10):971–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Matsushima A, Ogura H, Fujita K, Koh T, Tanaka H, Sumi Y, et al. Early activation of gammadelta T lymphocytes in patients with severe systemic inflammatory response syndrome. Shock. 2004;22(1):11–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Lv R, Zhao J, Lei M, Xiao D, Yu Y, Xie J. IL-33 attenuates sepsis by inhibiting IL-17 receptor signaling through upregulation of SOCS3. Cell Physiol Biochem. 2017;42(5):1961–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Bosmann M, Ward PA. Therapeutic potential of targeting IL-17 and IL-23 in sepsis. Clin Transl Med. 2012;1(1):4.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Arase H, Arase N, Saito T. Interferon gamma production by natural killer (NK) cells and NK1.1 + T cells upon NKR-P1 cross-linking. J Exp Med. 1996;183(5):2391–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Chiche L, Forel JM, Thomas G, Farnarier C, Vely F, Blery M, et al. The role of natural killer cells in sepsis. J Biomed Biotechnol. 2011;2011:986491.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xu H, Turnquist HR, Hoffman R, Billiar TR. Role of the IL-33-ST2 axis in sepsis. Mil Med Res. 2017;4:3.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangChina

Personalised recommendations