Inflammation Research

, Volume 67, Issue 6, pp 495–501 | Cite as

The role of lymphotoxin-α in rheumatoid arthritis

  • Tomohiro Hirose
  • Yuri Fukuma
  • Ayumu Takeshita
  • Keiichiro Nishida



The role of tumor necrosis factor (TNF) in the inflammatory response in rheumatoid arthritis (RA) is well established, whereas less is known about the role of TNF’s close homolog, lymphotoxin alpha (LTα).


Increased levels of LTα are found in the serum and synovial tissue of patients with RA, and in vitro studies found that LTα-induced proliferation of RA fibroblast-like synoviocytes was at a similar level to TNF. These findings support the idea that anti-LTα treatment could be beneficial in patients with RA, but pateclizumab, an anti-LTα antibody, was not as efficacious as the anti-TNF agent adalimumab in reducing symptoms of RA in a head-to-head study, suggesting that anti-LTα therapies might not represent a valid alternative treatment option in patients with RA. However, suppression of LTα activity might be relevant in the context of RA-related comorbidities, as patients with RA have an increased risk of myocardial infarction (MI) compared with the general population, and specific polymorphisms of the LTα gene have been linked to increased MI risk.


In this review, we summarize the key characteristics of LTα and the most recent findings on the role of LTα in RA.


Lymphotoxin alpha Tumor necrosis factor Rheumatoid arthritis Pateclizumab Etanercept 



Medical writing support was provided by Helen Jones and Sabrina Giavara of Engage Scientific Solutions and was funded by Pfizer.

Compliance with ethical standards

Conflict of interest

TH and YF are employees of Pfizer Japan Inc. TH is a stockholder of Pfizer. KN has received research funding from AbbVie, Astellas, Chugai, Eisai, Mitsubishi-Tanabe, and Ono, and honoraria from Astellas, Ayumi, Chugai, Mitsubishi-Tanabe, Pfizer, and Bristol-Myers Squibb/Ono. AT has no competing interests.


  1. 1.
    Alamanos Y, Drosos AA. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev. 2005;4:130–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Pope RM. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat Rev Immunol. 2002;2:527–35.CrossRefPubMedGoogle Scholar
  3. 3.
    Benaglio F, Vitolo B, Scarabelli M, Binda E, Bugatti S, Caporali R, et al. The draining lymph node in rheumatoid arthritis: current concepts and research perspectives. Biomed Res Int. 2015;2015:420251.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol. 2003;66:1403–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Manicourt DH, Triki R, Fukuda K, Devogelaer JP, Nagant de Deuxchaisnes C, Thonar EJ. Levels of circulating tumor necrosis factor alpha and interleukin-6 in patients with rheumatoid arthritis. Relationship to serum levels of hyaluronan and antigenic keratan sulfate. Arthritis Rheum. 1993;36:490–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Tetta C, Camussi G, Modena V, Di Vittorio C, Baglioni C. Tumour necrosis factor in serum and synovial fluid of patients with active and severe rheumatoid arthritis. Ann Rheum Dis. 1990;49:665–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Scott BB, Weisbrot LM, Greenwood JD, Bogoch ER, Paige CJ, Keystone EC. Rheumatoid arthritis synovial fibroblast and U937 macrophage/monocyte cell line interaction in cartilage degradation. Arthritis Rheum. 1997;40:490–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Moots RJ, Naisbett-Groet B. The efficacy of biologic agents in patients with rheumatoid arthritis and an inadequate response to tumour necrosis factor inhibitors: a systematic review. Rheumatology. 2012;51:2252–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Calmon-Hamaty F, Combe B, Hahne M, Morel J. Lymphotoxin alpha revisited: general features and implications in rheumatoid arthritis. Arthritis Res Ther. 2011;13:232.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gray PW, Aggarwal BB, Benton CV, Bringman TS, Henzel WJ, Jarrett JA, et al. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature. 1984;312:721–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP, et al. Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell. 1993;72:847 – 56.CrossRefPubMedGoogle Scholar
  12. 12.
    Ruddle NH. Lymphotoxin and TNF: how it all began-a tribute to the travelers. Cytokine Growth Factor Rev. 2014;25:83 – 9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.CrossRefPubMedGoogle Scholar
  14. 14.
    Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine Growth Factor Rev. 2014;25:453 – 72.CrossRefPubMedGoogle Scholar
  15. 15.
    Browning JL, Dougas I, Ngam-ek A, Bourdon PR, Ehrenfels BN, Miatkowski K, et al. Characterization of surface lymphotoxin forms. Use of specific monoclonal antibodies and soluble receptors. J Immunol. 1995;154:33–46.PubMedGoogle Scholar
  16. 16.
    Butler DM, Feldmann M, Di Padova F, Brennan FM. p55 and p75 tumor necrosis factor receptors are expressed and mediate common functions in synovial fibroblasts and other fibroblasts. Eur Cytokine Netw. 1994;5:441–8.PubMedGoogle Scholar
  17. 17.
    Grell M, Wajant H, Zimmermann G, Scheurich P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci USA. 1998;95:570–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    MacEwan DJ. TNF ligands and receptors—a matter of life and death. Br J Pharmacol. 2002;135:855–75.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA Jr, Goeddel DV. The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci USA. 1991;88:9292–6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Calmon-Hamaty F, Combe B, Hahne M, Morel J. Lymphotoxin alpha stimulates proliferation and pro-inflammatory cytokine secretion of rheumatoid arthritis synovial fibroblasts. Cytokine. 2011;53:207 – 14.CrossRefPubMedGoogle Scholar
  21. 21.
    Borset M, Medvedev AE, Sundan A, Espevik T. The role of the two TNF receptors in proliferation, NF-kappa B activation and discrimination between TNF and LT alpha signalling in the human myeloma cell line OH-2. Cytokine. 1996;8:430–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Medvedev AE, Espevik T, Ranges G, Sundan A. Distinct roles of the two tumor necrosis factor (TNF) receptors in modulating TNF and lymphotoxin alpha effects. J Biol Chem. 1996;271:9778–84.CrossRefPubMedGoogle Scholar
  23. 23.
    Stauber GB, Aggarwal BB. Characterization and affinity cross-linking of receptors for human recombinant lymphotoxin (tumor necrosis factor-beta) on a human histiocytic lymphoma cell line, U-937. J Biol Chem. 1989;264:3573–6.PubMedGoogle Scholar
  24. 24.
    Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell. 1996;84:299–308.CrossRefPubMedGoogle Scholar
  25. 25.
    Morgan MJ, Kim YS, Liu ZG. TNFalpha and reactive oxygen species in necrotic cell death. Cell Res. 2008;18:343–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Cabal-Hierro L, Lazo PS. Signal transduction by tumor necrosis factor receptors. Cell Signal. 2012;24:1297–305.CrossRefPubMedGoogle Scholar
  27. 27.
    Haworth C, Brennan FM, Chantry D, Turner M, Maini RN, Feldmann M. Expression of granulocyte-macrophage colony-stimulating factor in rheumatoid arthritis: regulation by tumor necrosis factor-alpha. Eur J Immunol. 1991;21:2575–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Young J, Nguyen A, Qiu ZJ, Ying Y, Gao X, Reed C, et al. A novel immunoassay to measure total serum lymphotoxin-alpha levels in the presence of an anti-LTalpha therapeutic antibody. J Immunol Methods. 2015;424:91–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Buhrmann C, Shayan P, Aggarwal BB, Shakibaei M. Evidence that TNF-β (lymphotoxin alpha) can activate the inflammatory environment in human chondrocytes. Arthritis Res Ther. 2013;15:R202.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chiang EY, Kolumam GA, Yu X, Francesco M, Ivelja S, Peng I, et al. Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat Med. 2009;15:766–73.CrossRefPubMedGoogle Scholar
  31. 31.
    Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM, et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol. 2001;167:1072–80.CrossRefPubMedGoogle Scholar
  32. 32.
    Santos MJ, Fernandes D, Caetano-Lopes J, Perpetuo IP, Vidal B, Canhao H, et al. Lymphotoxin-alpha 252 A> G polymorphism: a link between disease susceptibility and dyslipidemia in rheumatoid arthritis? J Rheumatol. 2011;38:1244–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Takeuchi F, Nabeta H, Hong GH, Kawasugi K, Mori M, Matsuta K, et al. The genetic contribution of the TNFa11 microsatellite allele and the TNFb + 252*2 allele in Japanese RA. Clin Exp Rheumatol. 2005;23:494–8.PubMedGoogle Scholar
  34. 34.
    Robak T, Gladalska A, Stepien H. The tumour necrosis factor family of receptors/ligands in the serum of patients with rheumatoid arthritis. Eur Cytokine Netw. 1998;9:145–54.PubMedGoogle Scholar
  35. 35.
    Emu B, Luca D, Offutt C, Grogan JL, Rojkovich B, Williams MB, et al. Safety, pharmacokinetics, and biologic activity of pateclizumab, a novel monoclonal antibody targeting lymphotoxin alpha: results of a phase I randomized, placebo-controlled trial. Arthritis Res Ther. 2012;14:R6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kennedy WP, Simon JA, Offutt C, Horn P, Herman A, Townsend MJ, et al. Efficacy and safety of pateclizumab (anti-lymphotoxin-alpha) compared to adalimumab in rheumatoid arthritis: a head-to-head phase 2 randomized controlled study (The ALTARA Study). Arthritis Res Ther. 2014;16:467.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    electronic Medicines Compendium (eMC). Enbrel 25 mg and 50 mg solution for injection in pre-filled pen. 2016. Accessed 20 Nov 2017.
  38. 38.
    Moreland LW, Schiff MH, Baumgartner SW, Tindall EA, Fleischmann RM, Bulpitt KJ, et al. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann Intern Med. 1999;130:478–86.CrossRefPubMedGoogle Scholar
  39. 39.
    Murray KM, Dahl SL. Recombinant human tumor necrosis factor receptor (p75) Fc fusion protein (TNFR:Fc) in rheumatoid arthritis. Ann Pharmacother. 1997;31:1335–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Takeshita M, Suzuki K, Kikuchi J, Izumi K, Kurasawa T, Yoshimoto K, et al. Infliximab and etanercept have distinct actions but similar effects on cytokine profiles in rheumatoid arthritis. Cytokine. 2015;75:222–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Neregård P, Krishnamurthy A, Revu S, Engström M, af Klint E, Catrina AI. Etanercept decreases synovial expression of tumour necrosis factor-α and lymphotoxin-α in rheumatoid arthritis. Scand J Rheumatol. 2014;43:85–90.CrossRefPubMedGoogle Scholar
  42. 42.
    Anolik JH, Ravikumar R, Barnard J, Owen T, Almudevar A, Milner EC, et al. Cutting edge: anti-tumor necrosis factor therapy in rheumatoid arthritis inhibits memory B lymphocytes via effects on lymphoid germinal centers and follicular dendritic cell networks. J Immunol. 2008;180:688–92.CrossRefPubMedGoogle Scholar
  43. 43.
    Bingham CO 3rd, Ince A, Haraoui B, Keystone EC, Chon Y, Baumgartner S. Effectiveness and safety of etanercept in subjects with RA who have failed infliximab therapy: 16-week, open-label, observational study. Curr Med Res Opin. 2009;25:1131–42.CrossRefPubMedGoogle Scholar
  44. 44.
    Dougados M, Soubrier M, Antunez A, Balint P, Balsa A, Buch MH, et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA). Ann Rheum Dis. 2014;73:62–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Dhawan SS, Quyyumi AA. Rheumatoid arthritis and cardiovascular disease. Curr Atheroscler Rep. 2008;10:128–33.CrossRefPubMedGoogle Scholar
  46. 46.
    Tanaka T, Ozaki K. Inflammation as a risk factor for myocardial infarction. J Hum Genet. 2006;51:595–604.CrossRefPubMedGoogle Scholar
  47. 47.
    Ozaki K, Tanaka T. Genome-wide association study to identify SNPs conferring risk of myocardial infarction and their functional analyses. Cell Mol Life Sci. 2005;62:1804–13.CrossRefPubMedGoogle Scholar
  48. 48.
    Panoulas VF, Nikas SN, Smith JP, Douglas KM, Nightingale P, Milionis HJ, et al. Lymphotoxin 252A> G polymorphism is common and associates with myocardial infarction in patients with rheumatoid arthritis. Ann Rheum Dis. 2008;67:1550–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Wu JJ, Poon KY, Bebchuk JD. Association between the type and length of tumor necrosis factor inhibitor therapy and myocardial infarction risk in patients with psoriasis. J Drugs Dermatol. 2013;12:899–903.PubMedGoogle Scholar
  50. 50.
    Low ASL, Symmons DPM, Lunt M, Mercer LK, Gale CP, Watson KD, et al. Relationship between exposure to tumour necrosis factor inhibitor therapy and incidence and severity of myocardial infarction in patients with rheumatoid arthritis. Ann Rheum Dis. 2017;76:654–60.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rangel-Moreno J, Hartson L, Navarro C, Gaxiola M, Selman M, Randall TD. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest. 2006;116:3183–94.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tomohiro Hirose
    • 1
  • Yuri Fukuma
    • 1
  • Ayumu Takeshita
    • 2
  • Keiichiro Nishida
    • 2
  1. 1.Immunology & Inflammation Medical Affairs, Pfizer Innovative HealthPfizer Japan IncTokyoJapan
  2. 2.Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan

Personalised recommendations