Skip to main content

Advertisement

Log in

A cyclic pathway of P2 × 7, bradykinin, and dopamine receptor activation induces a sustained articular hyperalgesia in the knee joint of rats

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

We investigated whether: (1) P2 × 7 receptor activation by its agonist (BzATP) induces articular hyperalgesia in the rat’s knee joint via inflammatory mechanisms and (2) activation of P2 × 7 receptors by endogenous ATP contributes to the articular hyperalgesia induced by bradykinin, TNF-α, IL-1β, CINC-1, PGE2, and dopamine.

Methods

The articular hyperalgesia was quantified using the rat knee joint incapacitation test. The knee joint inflammation, characterized by the concentration of pro-inflammatory cytokines and by neutrophil migration, was quantified in the synovial lavage fluid by ELISA and myeloperoxidase enzyme activity assay, respectively.

Results

BzATP induced a dose-dependent articular hyperalgesia in the rat’s knee joint that was significantly reduced by the selective antagonists for P2 × 7, bradykinin B1 or B2 receptors, β1 or β2 adrenoceptors, and by pre-treatment with Indomethacin. BzATP induced a local increase of TNF-α, IL-1β, IL-6, and CINC-1 concentration and neutrophil migration into the knee joint. The co-administration of the selective P2 × 7 receptor antagonist A-740003 significantly reduced the articular hyperalgesia induced by bradykinin and dopamine, but not by TNF-α, IL-1β, CINC-1, and PGE2.

Conclusions

P2 × 7 receptor activation induces articular hyperalgesia mediated by the previous inflammatory mediator release. P2 × 7 receptor-induced articular hyperalgesia is sustained by the involvement of this purinergic receptor in bradykinin and dopamine-induced hyperalgesia in the knee joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82:1013–67.

    Article  CAS  PubMed  Google Scholar 

  2. Broom DC, Matson DJ, Bradshaw E, Buck ME, Meade R, Coombs S, et al. Characterization of N-(adamantan-1-ylmethyl)-5-[(3R-amino-pyrrolidin-1-yl)methyl]-2-chloro-ben zamide, a P2 × 7 antagonist in animal models of pain and inflammation. J Pharmacol Exp Ther 2008; 327:620–33.

    Article  CAS  PubMed  Google Scholar 

  3. Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, et al. Absence of the P2 × 7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol. 2002;168:6436–45.

    Article  CAS  PubMed  Google Scholar 

  4. Teixeira JM, Dias EV, Parada CA, Tambeli CH. Intra-articular blockade of P2 × 7 receptor reduces the articular hyperalgesia and inflammation in the knee joint synovitis especially in female rats. J Pain 2017;18(2):132–43.

    Article  CAS  PubMed  Google Scholar 

  5. Teixeira JM, Oliveira MC, Nociti FH Jr, Clemente-Napimoga JT, Pelegrini-da-Silva A, Parada CA, et al. Involvement of temporomandibular joint P2 × 3 and P2 × 2/3 receptors in carrageenan-induced inflammatory hyperalgesia in rats. Eur J Pharmacol. 2010;645:79–85.

    Article  CAS  PubMed  Google Scholar 

  6. Dowd E, McQueen DS, Chessell IP, Humphrey PP. P2X receptor-mediated excitation of nociceptive afferents in the normal and arthritic rat knee joint. Br J Pharmacol. 1998;125:341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumahashi N, Naitou K, Nishi H, Oae K, Watanabe Y, Kuwata S, et al. Correlation of changes in pain intensity with synovial fluid adenosine triphosphate levels after treatment of patients with osteoarthritis of the knee with high-molecular-weight hyaluronic acid. Knee. 2011;18:160–4.

    Article  PubMed  Google Scholar 

  8. Seino D, Tokunaga A, Tachibana T, Yoshiya S, Dai Y, Obata K, et al. The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint. Pain. 2006;123:193–203.

    Article  CAS  PubMed  Google Scholar 

  9. Park W, Masuda I, Cardenal-Escarcena A, Palmer DL, McCarty DJ. Inorganic pyrophosphate generation from adenosine triphosphate by cell-free human synovial fluid. J Rheumatol 1996; 23:665–71.

    CAS  PubMed  Google Scholar 

  10. Ryan LM, Rachow JW, McCarty DJ. Synovial fluid ATP: a potential substrate for the production of inorganic pyrophosphate. J Rheumatol. 1991;18:716–20.

    CAS  PubMed  Google Scholar 

  11. Beigi R, Kobatake E, Aizawa M, Dubyak GR. Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol. 1999;276:C267–C78.

    Article  CAS  PubMed  Google Scholar 

  12. Campwala H, Fountain SJ. Constitutive and agonist stimulated ATP secretion in leukocytes. Commun Integr Biol. 2013;6:e23631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mizumoto N, Mummert ME, Shalhevet D, Takashima A. Keratinocyte ATP release assay for testing skin-irritating potentials of structurally diverse chemicals. J Invest Dermatol. 2003;121:1066–72.

    Article  CAS  PubMed  Google Scholar 

  14. Sikora A, Liu J, Brosnan C, Buell G, Chessel I, Bloom BR. Cutting edge: purinergic signaling regulates radical-mediated bacterial killing mechanisms in macrophages through a P2 × 7-independent mechanism. J Immunol 1999; 163:558–61.

    CAS  PubMed  Google Scholar 

  15. Chiozzi P, Sanz JM, Ferrari D, Falzoni S, Aleotti A, Buell GN, et al. Spontaneous cell fusion in macrophage cultures expressing high levels of the P2Z/P2 × 7 receptor. J Cell Biol. 1997;138:697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G. Tissue distribution of the P2 × 7 receptor. Neuropharmacology. 1997;36:1277–83.

    Article  CAS  PubMed  Google Scholar 

  17. Kim M, Spelta V, Sim J, North RA, Surprenant A. Differential assembly of rat purinergic P2 × 7 receptor in immune cells of the brain and periphery. J Biol Chem. 2001;276:23262–7.

    Article  CAS  PubMed  Google Scholar 

  18. Surprenant A, North RA. Signaling at purinergic P2X receptors. Annu Rev Physiol 2009; 71:333–59.

    Article  CAS  PubMed  Google Scholar 

  19. Caporali F, Capecchi PL, Gamberucci A, Lazzerini PE, Pompella G, Natale M, et al. Human rheumatoid synoviocytes express functional P2 × 7 receptors. J Mol Med (Berlin) 2008; 86:937–49.

    Article  CAS  Google Scholar 

  20. Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, et al. ADP and AMP induce interleukin-1beta release from microglial cells through activation of ATP-primed P2 × 7 receptor channels. J Neurosci. 2002;22:3061–9.

    PubMed  Google Scholar 

  21. Kahlenberg JM, Dubyak GR. Mechanisms of caspase-1 activation by P2 × 7 receptor-mediated K + release. Am J Physiol Cell Physiol. 2004;286:C1100–C8.

    Article  CAS  PubMed  Google Scholar 

  22. Panenka W, Jijon H, Herx LM, Armstrong JN, Feighan D, Wei T, et al. P2 × 7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci. 2001;21:7135–42.

    CAS  PubMed  Google Scholar 

  23. Verhoef PA, Estacion M, Schilling W, Dubyak GR. P2 × 7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases, and IL-1 beta release. J Immunol. 2003;170:5728–38.

    Article  CAS  PubMed  Google Scholar 

  24. Cunha FQ, Lorenzetti BB, Poole S, Ferreira SH. Interleukin-8 as a mediator of sympathetic pain. Br J Pharmacol. 1991;104:765–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol. 1992;107:660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferreira SH, Lorenzetti BB, Cunha FQ, Poole S. Bradykinin release of TNF-alpha plays a key role in the development of inflammatory hyperalgesia. Agents Actions 1993; 38(Spec No):C7–C9.

    Article  CAS  PubMed  Google Scholar 

  27. Loram LC, Fuller A, Fick LG, Cartmell T, Poole S, Mitchell D. Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J Pain. 2007;8:127–36.

    Article  CAS  PubMed  Google Scholar 

  28. Luiz AP, Schroeder SD, Chichorro JG, Calixto JB, Zampronio AR, Rae GA. Kinin B(1) and B(2) receptors contribute to orofacial heat hyperalgesia induced by infraorbital nerve constriction injury in mice and rats. Neuropeptides. 2010;44:87–92.

    Article  CAS  PubMed  Google Scholar 

  29. Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev. 2012;92:1699–775.

    Article  CAS  PubMed  Google Scholar 

  30. Rodrigues LL, Oliveira MC, Pelegrini-da-Silva A, de Arruda Veiga MC, Parada CA, Tambeli CH. Peripheral sympathetic component of the temporomandibular joint inflammatory pain in rats. J Pain. 2006;7:929–36.

    Article  PubMed  Google Scholar 

  31. Teixeira JM, de Oliveira-Fusaro MC, Parada CA, Tambeli CH. Peripheral P2 × 7 receptor-induced mechanical hyperalgesia is mediated by bradykinin. Neuroscience. 2014;277:163–73.

    Article  CAS  PubMed  Google Scholar 

  32. Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development?. Pharmacol Ther 2006; 112:116–38.

    Article  CAS  PubMed  Google Scholar 

  33. Villarreal CF, Funez MI, Cunha Fde Q, Parada CA, Ferreira SH. The long-lasting sensitization of primary afferent nociceptors induced by inflammation involves prostanoid and dopaminergic systems in mice. Pharmacol Biochem Behav 2013; 103:678–83.

    Article  CAS  PubMed  Google Scholar 

  34. Attur MG, Patel IR, Patel RN, Abramson SB, Amin AR. Autocrine production of IL-1 beta by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc Assoc Am Physicians. 1998;110:65–72.

    CAS  PubMed  Google Scholar 

  35. Brechter AB, Lerner UH. Bradykinin potentiates cytokine-induced prostaglandin biosynthesis in osteoblasts by enhanced expression of cyclooxygenase 2, resulting in increased RANKL expression. Arthritis Rheum. 2007;56:910–23.

    Article  CAS  PubMed  Google Scholar 

  36. Garnero P, Thompson E, Woodworth T, Smolen JS. Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum. 2010;62:33–43.

    Article  CAS  PubMed  Google Scholar 

  37. Kasama T, Miwa Y, Isozaki T, Odai T, Adachi M, Kunkel SL. Neutrophil-derived cytokines: potential therapeutic targets in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4:273–9.

    Article  CAS  PubMed  Google Scholar 

  38. Meini S, Maggi CA. Knee osteoarthritis: a role for bradykinin?. Inflamm Res 2008; 57:351–61.

    Article  CAS  PubMed  Google Scholar 

  39. Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum 2000; 43:801–11.

    Article  CAS  PubMed  Google Scholar 

  40. Mohr W. Cartilage destruction via the synovial fluid in rheumatoid arthritis. J Rheumatol. 1995;22:1436–8.

    CAS  PubMed  Google Scholar 

  41. Moon SJ, Park MK, Oh HJ, Lee SY, Kwok SK, Cho ML, et al. Engagement of toll-like receptor 3 induces vascular endothelial growth factor and interleukin-8 in human rheumatoid synovial fibroblasts. Korean J Intern Med 2010; 25:429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanaka Y, Takeuchi T, Amano K, Saito K, Hanami K, Nawata M, et al. Effect of interleukin-6 receptor inhibitor, tocilizumab, in preventing joint destruction in patients with rheumatoid arthritis showing inadequate response to TNF inhibitors. Mod Rheumatol. 2014;24:399–404.

    Article  CAS  PubMed  Google Scholar 

  43. Rosland JH. The formalin test in mice: the influence of ambient temperature. Pain. 1991;45:211–6.

    Article  CAS  PubMed  Google Scholar 

  44. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.

    Article  CAS  PubMed  Google Scholar 

  45. Eng J. Sample size estimation: how many individuals should be studied? Radiology 2003; 227:309–13.

    Article  PubMed  Google Scholar 

  46. Jacobson KA, Jarvis MF, Williams M. Purine and pyrimidine (P2) receptors as drug targets. J Med Chem. 2002;45:4057–93.

    Article  CAS  PubMed  Google Scholar 

  47. Jarvis MF, Wismer CT, Schweitzer E, Yu H, van Biesen T, Lynch KJ, et al. Modulation of BzATP and formalin induced nociception: attenuation by the P2X receptor antagonist, TNP-ATP and enhancement by the P2 × (3) allosteric modulator, cibacron blue. Br J Pharmacol 2001; 132:259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, et al. A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2 × 7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther. 2006;319:1376–85.

    Article  CAS  PubMed  Google Scholar 

  49. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2 × 3 and P2 × 2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA. 2002;99:17179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Teixeira JM, Bobinski F, Parada CA, Sluka KA, Tambeli CH. P2 × 3 and P2 × 2/3 receptors play a crucial role in articular hyperalgesia development through inflammatory mechanisms in the knee joint experimental synovitis. Mol Neurobiol. 2017; 54(8):6174–86.

    Article  CAS  PubMed  Google Scholar 

  51. Ferreira J, Triches KM, Medeiros R, Cabrini DA, Mori MA, Pesquero JB, et al. The role of kinin B1 receptors in the nociception produced by peripheral protein kinase C activation in mice. Neuropharmacology. 2008;54:597–604.

    Article  CAS  PubMed  Google Scholar 

  52. Burgess GM, Perkins MN, Rang HP, Campbell EA, Brown MC, McIntyre P, et al. Bradyzide, a potent non-peptide B(2) bradykinin receptor antagonist with long-lasting oral activity in animal models of inflammatory hyperalgesia. Br J Pharmacol. 2000;129:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Allibardi S, Merati G, Chierchia S, Samaja M. Atenolol depresses post-ischaemic recovery in the isolated rat heart. Pharmacol Res. 1999;39:431–5.

    Article  CAS  PubMed  Google Scholar 

  54. Yalcin I, Choucair-Jaafar N, Benbouzid M, Tessier LH, Muller A, Hein L, et al. beta(2)-adrenoceptors are critical for antidepressant treatment of neuropathic pain. Ann Neurol 2009; 65:218–25.

    Article  CAS  PubMed  Google Scholar 

  55. Summ O, Evers S. Mechanism of action of indomethacin in indomethacin-responsive headaches. Curr Pain Headache Rep. 2013;17:327.

    Article  PubMed  Google Scholar 

  56. Ley K, Linnemann G, Meinen M, Stoolman LM, Gaehtgens P. Fucoidin, but not yeast polyphosphomannan PPME, inhibits leukocyte rolling in venules of the rat mesentery. Blood 1993; 81:177–85.

    CAS  PubMed  Google Scholar 

  57. de Oliveira Fusaro MC, Pelegrini-da-Silva A, Araldi D, Parada CA, Tambeli CH. P2 × 3 and P2 × 2/3 receptors mediate mechanical hyperalgesia induced by bradykinin, but not by pro-inflammatory cytokines, PGE(2) or dopamine. Eur J Pharmacol 2010; 649:177–82.

    Article  PubMed  CAS  Google Scholar 

  58. Cunha TM, Verri WA Jr, Schivo IR, Napimoga MH, Parada CA, Poole S, et al. Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol 2008; 83:824–32.

    Article  CAS  PubMed  Google Scholar 

  59. Tonussi CR, Ferreira SH. Rat knee-joint carrageenin incapacitation test: an objective screen for central and peripheral analgesics. Pain. 1992;48:421–7.

    Article  CAS  PubMed  Google Scholar 

  60. Ekundi-Valentim E, Santos KT, Camargo EA, Denadai-Souza A, Teixeira SA, Zanoni CI, et al. Differing effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat. Br J Pharmacol. 2010;159:1463–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schultz J, Kaminker K. Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization. Archives of biochemistry biophysics. 1962;96:465–7.

    Article  CAS  PubMed  Google Scholar 

  62. Everse J, Everse KE, Grisham MB. Peroxidases in chemistry and biology. Boca Raton: CRC Press; 1991.

    Google Scholar 

  63. Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982;78:206–9.

    Article  CAS  PubMed  Google Scholar 

  64. Torres-Chavez KE, Sanfins JM, Clemente-Napimoga JT, Pelegrini-Da-Silva A, Parada CA, Fischer L, et al. Effect of gonadal steroid hormones on formalin-induced temporomandibular joint inflammation. Eur J Pain. 2012;16:204–16.

    Article  CAS  PubMed  Google Scholar 

  65. Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, Alexander KM, et al. Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 1999; 376:127–38.

    Article  CAS  PubMed  Google Scholar 

  66. Honore P, Mikusa J, Bianchi B, McDonald H, Cartmell J, Faltynek C, et al. TNP-ATP, a potent P2 × 3 receptor antagonist, blocks acetic acid-induced abdominal constriction in mice: comparison with reference analgesics. Pain. 2002;96:99–105.

    Article  CAS  PubMed  Google Scholar 

  67. Dai Y, Fukuoka T, Wang H, Yamanaka H, Obata K, Tokunaga A, et al. Contribution of sensitized P2X receptors in inflamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons. Pain 2004; 108:258–66.

    Article  CAS  PubMed  Google Scholar 

  68. Shinoda M, Ozaki N, Asai H, Nagamine K, Sugiura Y. Changes in P2 × 3 receptor expression in the trigeminal ganglion following monoarthritis of the temporomandibular joint in rats. Pain. 2005;116:42–51.

    Article  CAS  PubMed  Google Scholar 

  69. Shinoda M, Kawashima K, Ozaki N, Asai H, Nagamine K, Sugiura Y. P2 × 3 receptor mediates heat hyperalgesia in a rat model of trigeminal neuropathic pain. J Pain. 2007;8:588–97.

    Article  CAS  PubMed  Google Scholar 

  70. Ito G, Suekawa Y, Watanabe M, Takahashi K, Inubushi T, Murasaki K, et al. P2 × 7 receptor in the trigeminal sensory nuclear complex contributes to tactile allodynia/hyperalgesia following trigeminal nerve injury. Eur J Pain. 2013;17:185–99.

    Article  CAS  PubMed  Google Scholar 

  71. Wismer CT, Faltynek CR, Jarvis MF, McGaraughty S. Distinct neurochemical mechanisms are activated following administration of different P2X receptor agonists into the hindpaw of a rat. Brain Res 2003; 965:187–93.

    Article  CAS  PubMed  Google Scholar 

  72. Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M. P2 × 7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci 2010; 30:573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gomis A, Meini S, Miralles A, Valenti C, Giuliani S, Belmonte C, et al. Blockade of nociceptive sensory afferent activity of the rat knee joint by the bradykinin B2 receptor antagonist fasitibant. Osteoarthritis Cartilage. 2013;21:1346–54.

    Article  CAS  PubMed  Google Scholar 

  74. Valenti C, Giuliani S, Cialdai C, Tramontana M, Maggi CA. Fasitibant chloride, a kinin B(2) receptor antagonist, and dexamethasone interact to inhibit carrageenan-induced inflammatory arthritis in rats. Br J Pharmacol. 2012;166:1403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Calixto JB, Cabrini DA, Ferreira J, Campos MM. Kinins in pain and inflammation. Pain. 2000;87:1–5.

    Article  CAS  PubMed  Google Scholar 

  76. Couture R, Harrisson M, Vianna RM, Cloutier F. Kinin receptors in pain and inflammation. Eur J Pharmacol. 2001;429:161–76.

    Article  CAS  PubMed  Google Scholar 

  77. Marceau F, Hess JF, Bachvarov DR. The B1 receptors for kinins. Pharmacol Rev 1998; 50:357–86.

    CAS  PubMed  Google Scholar 

  78. Pawlak M, Borkiewicz P, Podgorski T, Schmidt RF. The activity of fine afferent nerve fibres of the rat knee joint and their modulation by inflammatory mediators. Ortop Traumatol Rehabil. 2008;10:63–74.

    PubMed  Google Scholar 

  79. Colman RW. Regulation of angiogenesis by the kallikrein-kinin system. Curr Pharm Des. 2006;12:2599–607.

    Article  CAS  PubMed  Google Scholar 

  80. Mukai E, Nagashima M, Hirano D, Yoshino S. Comparative study of symptoms and neuroendocrine-immune network mediator levels between rheumatoid arthritis patients and healthy subjects. Clin Exp Rheumatol 2000; 18:585–90.

    CAS  PubMed  Google Scholar 

  81. Capellino S, Cosentino M, Luini A, Bombelli R, Lowin T, Cutolo M, et al. Increased expression of dopamine receptors in synovial fibroblasts from patients with rheumatoid arthritis: inhibitory effects of dopamine on interleukin-8 and interleukin-6. Arthritis Rheumatol. 2014;66:2685–93.

    Article  CAS  PubMed  Google Scholar 

  82. Nakashioya H, Nakano K, Watanabe N, Miyasaka N, Matsushita S, Kohsaka H. Therapeutic effect of D1-like dopamine receptor antagonist on collagen-induced arthritis of mice. Mod Rheumatol. 2011;21:260–6.

    Article  CAS  PubMed  Google Scholar 

  83. Greig AV, Linge C, Terenghi G, McGrouther DA, Burnstock G. Purinergic receptors are part of a functional signaling system for proliferation and differentiation of human epidermal keratinocytes. J Invest Dermatol. 2003;120:1007–15.

    Article  CAS  PubMed  Google Scholar 

  84. Mancino G, Placido R, Di Virgilio F. P2 × 7 receptors and apoptosis in tuberculosis infection. J Biol Regul Homeost Agents. 2001;15:286–93.

    CAS  PubMed  Google Scholar 

  85. Boehm S. ATP stimulates sympathetic transmitter release via presynaptic P2X purinoceptors. J Neurosci 1999; 19:737–46.

    CAS  PubMed  Google Scholar 

  86. Sperlagh B, Erdelyi F, Szabo G, Vizi ES. Local regulation of [(3)H]-noradrenaline release from the isolated guinea-pig right atrium by P(2X)-receptors located on axon terminals. Br J Pharmacol. 2000;131:1775–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chopra B, Barrick SR, Meyers S, Beckel JM, Zeidel ML, Ford AP, et al. Expression and function of bradykinin B1 and B2 receptors in normal and inflamed rat urinary bladder urothelium. J Physiol 2005; 562:859–71.

    Article  CAS  PubMed  Google Scholar 

  88. Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci. 2005;8:1078–86.

    Article  CAS  PubMed  Google Scholar 

  89. Pinheiro AR, Paramos-de-Carvalho D, Certal M, Costa C, Magalhaes-Cardoso MT, Ferreirinha F, et al. Bradykinin-induced Ca2 + signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation. Cell Commun Signal. 2013;11:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tamesue S, Sato C, Katsuragi T. ATP release caused by bradykinin, substance P and histamine from intact and cultured smooth muscles of guinea-pig vas deferens. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:240–4.

    Article  CAS  PubMed  Google Scholar 

  91. Zhao Y, Migita K, Sato C, Usune S, Iwamoto T, Katsuragi T. Endoplasmic reticulum is a key organella in bradykinin-triggered ATP release from cultured smooth muscle cells. J Pharmacol Sci. 2007;105:57–65.

    Article  CAS  PubMed  Google Scholar 

  92. Ferreira SH, Lorenzetti BB, Poole S. Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. Br J Pharmacol. 1993;110:1227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gold MS, Shuster MJ, Levine JD. Role of a Ca(2+)-dependent slow afterhyperpolarization in prostaglandin E2-induced sensitization of cultured rat sensory neurons. Neurosci Lett. 1996;205:161–4.

    Article  CAS  PubMed  Google Scholar 

  94. Khasar SG, McCarter G, Levine JD. Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol. 1999;81:1104–12.

    Article  CAS  PubMed  Google Scholar 

  95. Rush AM, Waxman SG. PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res. 2004;1023:264–71.

    Article  CAS  PubMed  Google Scholar 

  96. Hildebrand C, Oqvist G, Brax L, Tuisku F. Anatomy of the rat knee joint and fibre composition of a major articular nerve. Anat Rec. 1991;229:545–55.

    Article  CAS  PubMed  Google Scholar 

  97. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, et al. Disruption of the P2 × 7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005; 114:386–96.

    Article  CAS  PubMed  Google Scholar 

  98. Colomar A, Marty V, Medina C, Combe C, Parnet P, Amedee T. Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2 × 7 receptors. J Biol Chem. 2003;278:30732–40.

    Article  CAS  PubMed  Google Scholar 

  99. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, et al. Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol. 1997;159:1451–8.

    CAS  PubMed  Google Scholar 

  100. Gourine AV, Poputnikov DM, Zhernosek N, Melenchuk EV, Gerstberger R, Spyer KM, et al. P2 receptor blockade attenuates fever and cytokine responses induced by lipopolysaccharide in rats. Br J Pharmacol 2005; 146:139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, et al. Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 2000; 75:965–72.

    Article  CAS  PubMed  Google Scholar 

  102. Mingam R, De Smedt V, Amedee T, Bluthe RM, Kelley KW, Dantzer R, et al. In vitro and in vivo evidence for a role of the P2 × 7 receptor in the release of IL-1 beta in the murine brain. Brain Behav Immun 2008; 22:234–44.

    Article  CAS  PubMed  Google Scholar 

  103. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, et al. Altered cytokine production in mice lacking P2 × (7) receptors. J Biol Chem 2001; 276:125–32.

    Article  CAS  PubMed  Google Scholar 

  104. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, et al. The P2 × 7 receptor: a key player in IL-1 processing and release. J Immunol. 2006;176:3877–83.

    Article  CAS  PubMed  Google Scholar 

  105. Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P, Di Virgilio F. Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol. 1996;156:1531–9.

    CAS  PubMed  Google Scholar 

  106. Sanz JM, Di Virgilio F. Kinetics and mechanism of ATP-dependent IL-1 beta release from microglial cells. J Immunol. 2000;164:4893–8.

    Article  CAS  PubMed  Google Scholar 

  107. Dubravec DB, Spriggs DR, Mannick JA, Rodrick ML. Circulating human peripheral blood granulocytes synthesize and secrete tumor necrosis factor alpha. Proc Natl Acad Sci USA. 1990;87:6758–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guerne PA, Zuraw BL, Vaughan JH, Carson DA, Lotz M. Synovium as a source of interleukin 6 in vitro. Contribution to local and systemic manifestations of arthritis. J Clin Invest 1989; 83:585–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hayashida K, Nanki T, Girschick H, Yavuz S, Ochi T, Lipsky PE. Synovial stromal cells from rheumatoid arthritis patients attract monocytes by producing MCP-1 and IL-8. Arthritis Res 2001; 3:118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mekori YA, Metcalfe DD. Mast cells in innate immunity. Immunol Rev 2000; 173:131–40.

    Article  CAS  PubMed  Google Scholar 

  111. Mor A, Abramson SB, Pillinger MH. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin Immunol 2005; 115:118–28.

    Article  CAS  PubMed  Google Scholar 

  112. Shakoory B, Fitzgerald SM, Lee SA, Chi DS, Krishnaswamy G. The role of human mast cell-derived cytokines in eosinophil biology. J Interferon Cytokine Res. 2004;24:271–81.

    Article  CAS  PubMed  Google Scholar 

  113. Basso AM, Bratcher NA, Harris RR, Jarvis MF, Decker MW, Rueter LE. Behavioral profile of P2 × 7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav Brain Res. 2009;198:83–90.

    Article  CAS  PubMed  Google Scholar 

  114. Edwards SW, Hallett MB. Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Immunol Today. 1997;18:320–4.

    Article  CAS  PubMed  Google Scholar 

  115. Ramos CD, Heluy-Neto NE, Ribeiro RA, Ferreira SH, Cunha FQ. Neutrophil migration induced by IL-8-activated mast cells is mediated by CINC-1. Cytokine 2003; 21:214–23.

    Article  CAS  PubMed  Google Scholar 

  116. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997; 6:315–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from São Paulo Research Foundation—FAPESP, Brazil (2009/16854-3 and 2010/05381-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Herrera Tambeli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving animals were in accordance with the ethical standards of the Committee on Animal Research of the University of Campinas and were conformed to IASP guidelines for the study of the pain in animals.

Additional information

Communicated by John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, J.M., Parada, C.A. & Tambeli, C.H. A cyclic pathway of P2 × 7, bradykinin, and dopamine receptor activation induces a sustained articular hyperalgesia in the knee joint of rats. Inflamm. Res. 67, 301–314 (2018). https://doi.org/10.1007/s00011-017-1122-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1122-7

Keywords

Navigation