Skip to main content

Advertisement

Log in

Hyaluronan in the experimental injury of the cartilage: biochemical action and protective effects

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Our knowledge of extracellular matrix (ECM) structure and function has increased enormously over the last decade or so. There is evidence demonstrating that ECM provides signals affecting cell adhesion, shape, migration, proliferation, survival, and differentiation. ECM presents many domains that become active after proteolytic cleavage. These active ECM fragments are called matrikines which play different roles; in particular, they may act as potent inflammatory mediators during cartilage injury.

Findings

A major component of the ECM that undergoes dynamic regulation during cartilage damage and inflammation is the non-sulphated glycosaminoglycan (GAG) hyaluronan (HA). In this contest, HA is the most studied because of its different activity due to the different polymerization state. In vivo evidences have shown that low molecular weight HA exerts pro-inflammatory action, while high molecular weight HA possesses anti-inflammatory properties. Therefore, the beneficial HA effects on arthritis are not only limited to its viscosity and lubricant action on the joints, but it is especially due to a specific and effective anti-inflammatory activity. Several in vitro experimental investigations demonstrated that HA treatment may regulate different biochemical pathways involved during the cartilage damage. Emerging reports are suggesting that the ability to recognize receptors both for the HA degraded fragments, whether for the high-polymerized native HA involve interaction with integrins, toll-like receptors (TLRs), and the cluster determinant (CD44). The activation of these receptors induced by small HA fragments, via the nuclear factor kappa-light-chain enhancer of activated B cell (NF-kB) mediation, directly or other different pathways, produces the transcription of a large number of damaging intermediates that lead to cartilage erosion.

Conclusions

This review briefly summarizes a number of findings of the recent studies focused on the protective effects of HA, at the different polymerization states, on experimental arthritis in vitro both in animal and human cultured chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nogueira E, Gomes A, Preto A, Cavaco-Paulo A. Update on therapeutic approaches for rheumatoid arthritis. Curr Med Chem. 2016;23:2190–203.

    Article  CAS  PubMed  Google Scholar 

  2. Smolen JS, Aletaha D, Mclnnes IB. Rheumatoid arthritis. Lancet. 2016;22(388):2023–38.

    Article  Google Scholar 

  3. Clegg TE, Caborn D, Mauffrey C. Viscosupplementation with hyaluronic acid in the treatment for cartilage lesions: a review of current evidence and future directions. Eur J Orthop Surg Traumatol. 2013;23:119–24.

    Article  PubMed  Google Scholar 

  4. Litwinium M, Krejner A, Speyrer MS, Gauto AR, Grzela T. Hyaluronic acid in inflammation and tissue regeneration. Wounds. 2016;28:78–88.

    Google Scholar 

  5. Fraser JRE, Laurent TC. Influence of serum on secretion of hyaluronic acid by synovial cells. Its possible relevance in arthritis. Ann Rheum Dis. 1969;28:419–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henrotin Y, Lambert C, Richette P. Importance of synovitis in osteoarthritis: evidence for the use of glycosaminoglycans against synovial inflammation. Semin Arthritis Rheum. 2014;43:579–87.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human disease. Physiol Rev. 2011;91:221–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao Y, Liu S, Huang J, Guo W, Chen J, Zhang L, et al. The ECM-cell interaction of cartilage extracellular matrix on chon-drocytes. Biomed Res Int. 2014;2014:648459.

    PubMed  PubMed Central  Google Scholar 

  9. Valachova K, Volpi N, Stern R, Soltes L. Hyaluronan in medical practice. Curr Med Chem. 2016;23:3607–17.

    Article  CAS  PubMed  Google Scholar 

  10. Quero L, Klawitter M, Schmaus A, Rothley M, Sleeman J, Tiaden AN, et al. Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signalling pathways. Arthitis Res Ther. 2013;15:R94. doi:10.1186/ar4274.

    Article  Google Scholar 

  11. Cantor JO, Nadkarni PP. Hyaluronan the Jekyll and Hyde molecule. Inflamm Allergy Drug Targets. 2006;5:257–60.

    Article  CAS  PubMed  Google Scholar 

  12. Cyphert JM, Trempus CS, Garantziotis S. Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol. 2015;. doi:10.1155/2015/563818.

    PubMed  PubMed Central  Google Scholar 

  13. Kavasi RM, Berdiaki A, Spyridaki I, Corsini E, Tsatsakis A, Tzanakakis G, et al. Ha metabolism in skin homeostasis and inflammatory disease. Food Chem Toxicol. 2017;101:128–38.

    Article  CAS  PubMed  Google Scholar 

  14. Cowman MK, Schmidt TA, Raghavan P, Stecco A. Viscoelastic properties of hyaluronan in physiological conditions. F1000Res. 2015;4:622. doi:10.12688/f1000research.6885.1.eCollection2015.

    PubMed  PubMed Central  Google Scholar 

  15. Hemshekhar M, Thushara RM, Chandranayaka S, Sherman LS, Kemparaju K, Girish KS. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int J Biol Macromol. 2016;86:917–28.

    Article  CAS  PubMed  Google Scholar 

  16. Adair-Kirk TL, Senior SM. Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2008;40:1101–10.

    Article  CAS  PubMed  Google Scholar 

  17. Piombo V. Small animal models to understand pathogenesis of osteoarthritis and use of stem cell in cartilage regeneration. Cell Biochem Funct. 2017;35:3–11.

    Article  CAS  PubMed  Google Scholar 

  18. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242:27–33.

    Article  CAS  PubMed  Google Scholar 

  19. Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drg Deliv Rev. 2016;97:186–203.

    Article  CAS  Google Scholar 

  20. Weigel PH, DeAngelis PL. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem. 2007;282:36777–81.

    Article  CAS  PubMed  Google Scholar 

  21. Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem. 1999;274:25085–92.

    Article  CAS  PubMed  Google Scholar 

  22. Rilla K, Oikari S, Jokela TA, Hyttinen JM, Karna R, Tammi RH, et al. Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3. J Biol Chem. 2013;288:5973–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Triggs-Raine B, Natowicz MR. Biology of hyaluronan: insights from genetic disorders of hyaluronan metabolism. World J Biol Chem. 2015;6:110–20.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fraser JR, Laurent TC, Engstrom-Laurent A, Laurent UG. Elimination of hyaluronic acid from the blood stream in the human. Clin Exp Pharmacol Physiol. 1984;11:17–25.

    Article  CAS  PubMed  Google Scholar 

  25. Stern R. Hyaluronidaes in cancer biology. Semin Cancer Biol. 2008;18:275–80.

    Article  CAS  PubMed  Google Scholar 

  26. Bastow ER, Byers S, Golub SB, Clarkin CE, Pitsillides AA, Fosang AJ. Hyaluronan synthesis and degradation in cartilage and bone. Cell Mol Life Sci. 2008;65:395–413.

    Article  CAS  PubMed  Google Scholar 

  27. McAtee CO, Barycki JJ, Simpson MA. Emerging roles for hyaluronidases in cancer metastasis and therapy. Adv Cancer Res. 2014;123:1–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ragan C, Meyer K. The hyaluronic acid of synovial fluid in rheumatoid arthritis. J Clin Invest. 1949;28:56–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manicourt DH, Triki R, Fukuda K, Devogelaer JP, Nagant de Deuxchaisnes C, Thonar EJ. Levels of circulating tumor necrosis factor alpha and interleukin-6 in patients with rheumatoid arthritis. Relationship to serum levels of hyaluronan and antigenic keratan sulfate. Arthritis Rheum. 1993;36:490–9.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou PH, Liu SQ, Peng H. The effect of hyaluronic acid on IL-1b-induced chondrocyte apoptosis in a rat model of osteoarthritis. J Orthop Res. 2008;26:1643–8.

    Article  CAS  PubMed  Google Scholar 

  31. Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Samà D, Calatroni A. Glycosaminoglycans modulate inflammation and apoptosis in LPS-treated chondrocytes. J Cell Biochem. 2009;106:83–92.

    Article  CAS  PubMed  Google Scholar 

  32. Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Calatroni A. Differential effect of molecular size HA in mouse chondrocytes stimulated with PMA. Biochim Biophys Acta. 2009;1790:1353–67.

    Article  CAS  PubMed  Google Scholar 

  33. Campo GM, Avenoso A, Campo S, Traina P, D’Ascola A, Calatroni A. Glycosaminoglycans reduced inflammatory response by modulating toll-like receptor-4 in LPS-stimulated chondrocytes. Arch Biochem Biophys. 2009;491:7–15.

    Article  CAS  PubMed  Google Scholar 

  34. Campo GM, Avenoso A, Campo S, D’Ascola A, Nastasi G, Calatroni A. Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes. Biochimie. 2010;92:2014–5.

    Article  Google Scholar 

  35. Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Rugolo CA, Calatroni A. Differential effect of molecular mass hyaluronan on lipopolysaccharide-induced damage in chondrocytes. Innate Immun. 2010;16:48–63.

    Article  CAS  PubMed  Google Scholar 

  36. Miki Y, Teramura T, Tomiyama T, Onodera Y, Matsuoka T, Fukuda K, Hamanishi C. Hyaluronan reversed proteoglycan synthesis inhibited by mechanical stress: possible involvement of antioxidant effect. Inflamm Res. 2010;59:471–7.

    Article  CAS  PubMed  Google Scholar 

  37. Shaefer EC, Stewart AA, Durgam SS, Byron CR, Stewart MC. Effects of sodium hyaluronate and triamcinolone acetonide on glycosaminoglycans metabolism in equine articular chondrocytes treated with interleukin-1. Am J Vet Res. 2009;70:1494–501.

    Article  Google Scholar 

  38. Liu-Bryan R, Terkeltaub R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 2010;62:2004–12.

    PubMed  PubMed Central  Google Scholar 

  39. Ariyoshi W, Takahashi N, Hida D, Knudson CB, Knudson W. Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides. Arthritis Rheum. 2012;64:187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Campo GM, Avenoso A, D’Ascola A, Scuruchi M, Prestipino V, Calatroni A, Campo S. Hyaluronan in part mediates IL-1beta-induced inflammation in mouse chondrocytes by up-regulating CD44 receptors. Gene. 2012;494:24–35.

    Article  CAS  PubMed  Google Scholar 

  41. Campo GM, Avenoso A, D’Ascola A, Prestipino V, Schuruchi M, Nastasi G, et al. Hyaluronan differently modulates TLR-4 and the inflammatory response in mouse chondrocytes. BioFactors. 2012;38:69–76.

    Article  CAS  PubMed  Google Scholar 

  42. Campo GM, Avenoso A, D’Ascola A, Scuruchi M, Prestipino V, Nastasi G, et al. Adenosine A2A receptor activation and hyaluronan fragment inhibition reduce inflammation in mouse articular chondrocytes stimulated with interleukin-1b. FEBS J. 2012;279:2120–33.

    Article  CAS  PubMed  Google Scholar 

  43. Campo GM, Avenoso A, D’Ascola A, Prestipino V, Scuruchi M, Nastasi G, et al. The stimulation of adenosine 2° receptor reduces inflammatory response in mouse articular chondrocytes treated with hyaluronan oligosaccharides. Matrix Biol. 2012;31:338–51.

    Article  CAS  PubMed  Google Scholar 

  44. Campo GM, Avenoso A, D’Ascola A, Prestipino V, Scuruchi M, Nastasi G, et al. Protein Kinase a mediated anti-inflammatory effects exerted by adenosine treatment in mouse chondrocytes stimulated with IL-1β. BioFactors. 2012;38:429–39.

    Article  CAS  PubMed  Google Scholar 

  45. Campo GM, Avenoso A, D’Ascola A, Scuruchi M, Nastasi G, Micali A, et al. The SOD mimic MnTM-2-PyP(5 +) reduces hyaluronan degradation-induced inflammation in mouse articular chondrocytes stimulated with Fe(II) plus ascorbate. Int J Biochem Cell Biol. 2013;45:1610–9.

    Article  CAS  PubMed  Google Scholar 

  46. Chang CH, Hsu YM, Chen YC, Lin FH, Sadhasivam S, Loo ST, Savitha S. Anti-inflammatory effects of hydrophilic and lipophilic statins with hyaluronic acid against LPS-induced inflammation in porcine articular chondrocytes. J Orthop Res. 2014;32:557–65.

    Article  CAS  PubMed  Google Scholar 

  47. Mladenovic Z, Saurel AS, Berenbaum F, Jacques C. Potential role of hyaluronic acid on bone in osteoarthritis: matrix metalloproteinases, aggrecanases, and RANKL expression are partially prevented by hyaluronic acid in interleukin-1-stimulated osteoblasts. J Rheumatol. 2014;41:945–54.

    Article  CAS  PubMed  Google Scholar 

  48. Campo GM, Avenoso A, D’Ascola A, Scuruchi M, Calatroni A, Campo S. Beta-arrestin-2 negatively modulates inflammation response in mouse chondrocytes induced by 4-mer hyaluronan oligosaccharide. Mol Cell Biochem. 2015;399:201–8.

    Article  CAS  PubMed  Google Scholar 

  49. Campo GM, Avenoso A, D’Ascola A, Scuruchi M, Calatroni A, Campo S. Beta-arrestin 1 is involved in the catabolic response stimulated by hyaluronan degradation in mouse chondrocytes. Cell Tissue Res. 2015;361:567–79.

    Article  CAS  PubMed  Google Scholar 

  50. Euppayo T, Siengdee P, Buddhachat K, Pradit W, Viriyakhasem N, Chomdej S, et al. Effects of low molecular weight hyaluronan combined with carprofen on canine osteoarthritis articular chondrocytes and cartilage explants in vitro. In Vitro Cell Dev Biol Anim. 2015;51:857–65.

    Article  CAS  PubMed  Google Scholar 

  51. Onodera Y, Teramura T, Takehara T, Fukuda K. Hyaluronic acid regulates a key redox control factor Nrf2 via phosphorylation of Akt in bovine articular chondrocytes. FEBS Open Bio. 2015;5:476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Siengdee P, Euppayo T, Buddhachat K, Chomdej S, Nganvongpanit K. Two fluoroquinolones and their combinations with hyaluronan: comparison of effects on canine chondrocyte culture. J Vet Pharmacol Ther. 2016;39:439–51.

    Article  CAS  PubMed  Google Scholar 

  53. Euppayo T, Siengdee P, Buddhachat K, Pradit W, Chomdej S, Ongchai S, Nganvongpanit K. In vitro effects of triamcinolone acetonide and in combination with hyaluronan on canine normal and spontaneous osteoarthritis articular cartilage. In Vitro Cell Dev Biol Anim. 2016;52:723–35.

    Article  CAS  PubMed  Google Scholar 

  54. Ichimaru S, Nakagawa S, Arai Y, Kishida T, Shin-Ya M, Honjo K, et al. Hypoxia potentiates anabolic effect of exogenous hyaluronic acid in rat articular cartilage. Int J Mol Sci. 2016;17:E1013.

    Article  PubMed  Google Scholar 

  55. Qiu B, Gong M, He QT, Zhou PH. Controlled release of interleukin-1 receptor antagonist from hyaluronic acid-chitosan microspheres attenuates interleukin-1b-induced inflammation and apoptosis in chondrocytes. Biomed Res Int. 2016;2016:6290957.

    PubMed  PubMed Central  Google Scholar 

  56. Haschizume M, Mihara M. Desirable effect of combination therapy with high molecular weight hyaluronate and NSAIDs on MMP production. Osteoarthr Cartil. 2009;17:1513–8.

    Article  Google Scholar 

  57. Surazynski A, Miltyk W, Czarnomysy R, Grabowska J, Palka J. Hyaluronic acid abrogates nitric oxide-dependent stimulation of collagen degradation in cultured human chondrocytes. Pharmacol Res. 2009;60:46–9.

    Article  CAS  PubMed  Google Scholar 

  58. Peng H, Zhou JL, Liu SQ, Hu QJ, Ming JH, Qiu B. Hyaluronic acid inhibits nitric oxide –induced apoptosis and dedifferentiation of articular chondrocytes in vitro. Inflamm Res. 2010;59:519–30.

    Article  CAS  PubMed  Google Scholar 

  59. Yasuda T. Comparison of hyaluronan effects among normal, osteoarthritis and rheumatoid arthritis cartilage stimulated with fibronectin fragments. Biomed Res. 2010;31:63–9.

    Article  CAS  PubMed  Google Scholar 

  60. Campo GM, Avenoso A, Campo S, D’Ascola A, Nastasi G, Calatroni A. Small hyaluronan oligosaccharides induce inflammation by engaging both toll-like-4 and CD44 receptors in human chondrocytes. Biochem Pharmacol. 2010;80:480–90.

    Article  CAS  PubMed  Google Scholar 

  61. Yasuda T. Hyaluronan inhibits p38 mitogen-activated protein kinase via the receptors in rheumatoid arthritis chondrocytes stimulated with fibronectin fragment. Clin Rheumatol. 2010;29:1259–67.

    Article  PubMed  Google Scholar 

  62. Hashizume M, Mihara M. High molecular weight hyaluronic acid inhibits IL-6-induced MMP production from human chondrocytes by up-regulating the ERK inhibitor, MKP-1. Biochem Biophys Res Commun. 2010;403:184–9.

    Article  CAS  PubMed  Google Scholar 

  63. Julovi SM, Ito H, Nishitani K, Jackson CJ, Nakamura T. Hyaluronan inhibits matrix metalloproteinase-13 in human arthritic chondrocytes via CD44 and p38. J Orthop Res. 2011;29:258–64.

    Article  CAS  PubMed  Google Scholar 

  64. Hiraiwa H, Sakai T, Mitsuyama H, Hamada T, Yamamoto R, Omachi T, et al. Inflammatory effect of advanced glycation end products on human meniscal cells from osteoarthritic knees. Inflamm Res. 2011;60:1039–48.

    Article  CAS  PubMed  Google Scholar 

  65. Yasuda T. Activation of p38 mitogen-activated protein kinase is inhibited by hyaluronan via intercellular adhesion molecule-1 in articular chondrocytes stimulated with type II collagen peptide. J Pharmacol Sci. 2012;118:25–32.

    Article  CAS  PubMed  Google Scholar 

  66. Brun P, Zavan B, Vindigni V, Chiavinato A, Pozzuoli A, Iacobellis C, Abatangelo G. In vitro response of osteoarthritic chondrocytes and fibroblast-like synoviocytes to a 500–730 kDa hyaluronan amide derivative. J Biomed Mater Res B Appl Biomater. 2012;100:2073–81.

    Article  PubMed  Google Scholar 

  67. Murata M, Yudoh K, Shimizu H, Beppu M, Nakamura H, Kato T, Masuko K. Layilin, a talin-binding hyaluronan receptor, is expressed in human articular chondrocytes and synoviocytes and is down-regulated by interleukin-1β. Mod Rheumatol. 2013;23:478–88.

    Article  CAS  PubMed  Google Scholar 

  68. Prasadam I, Mao X, Shi W, Crawford R, Xiao Y. Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment. J Mol Med. 2013;91:369–80.

    Article  CAS  PubMed  Google Scholar 

  69. Yasuda T. Nuclear factor-kB activation by type II collagen peptide in articular chondrocytes: its inhibition by hyaluronan via the receptors. Mod Rheumatol. 2013;23:1116–23.

    Article  CAS  PubMed  Google Scholar 

  70. Yu CJ, Ko CJ, Hsieh CH, Chien CT, Huang LH, Lee CW, Jiang CC. Proteomic analysis of osteoarthritic chondrocyte reveals the hyaluronic acid-regulated proteins involved in chondroprotective effect under oxidative stress. J Proteom. 2014;99:40–53.

    Article  CAS  Google Scholar 

  71. Yoshioka K, Yasuda Y, Kisukeda T, Nodera R, Tanaka Y, Miyamoto K. Pharmacological effects of novel cross-linked hyaluronate, Gel-200, in experimental animal models of osteoarthritis and human cell lines. Osteoarthr Cartil. 2014;22:879–87.

    Article  CAS  PubMed  Google Scholar 

  72. Mongkon JM, Thach M, Shi Q, Fernandes JC, Fahmi H, Benderdour M. Sorbitol-modified hyaluronic acid reduces oxidative stress, apoptosis and mediators of inflammation and catabolism in human osteoarthritic chondrocytes. Inflamm Res. 2014;63:691–701.

    Article  Google Scholar 

  73. Yasuda T. Type II collagen peptide stimulates Akt leading to nuclear-kB activation: its inhibition by hyaluronan. Biomed Res. 2014;35:193–9.

    Article  CAS  PubMed  Google Scholar 

  74. Chen WH, Lo WC, Hsu WC, Wei HJ, Liu HY, Lee CH, et al. Synergistic anabolic actions of hyaluronic acid and platelet-rich plasma on cartilage regeneration in osteoarthritis therapy. Biomaterials. 2014;35:9599–607.

    Article  CAS  PubMed  Google Scholar 

  75. Campo GM, Micali A, Avenoso A, D’Ascola A, Scuruchi M, Pisani A, et al. Inhibition of small HA fragment activity and stimulation of A2A adenosine receptor pathway limit apoptosis and reduce cartilage damage in experimental arthritis. Histochem Cell Biol. 2015;143:531–43.

    Article  CAS  PubMed  Google Scholar 

  76. Ozawa M, Nishida K, Yoshida A, Saito T, Harada R, Machida T, Ozaki T. Hyaluronan suppresses mechanical stress-induced expression of catabolic enzymes by human chondrocytes via inhibition of IL-1β production and subsequent NF-κB activation. Inflamm Res. 2015;64:243–52.

    Article  CAS  PubMed  Google Scholar 

  77. Lee YJ, Kim SA, Lee SH. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway. Acta Pharmacol Sin. 2016;37:664–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Furuta J, Ariyoshi W, Okinaga T, Takeuchi J, Mitsugi S, Tominaga K, Nishihara T. High molecular weight hyaluronic acid regulates MMP-13 expression in chondrocytes via DUSP10/MKP5. J Orthop Res. 2017;35:331–9.

    Article  CAS  PubMed  Google Scholar 

  79. Chen WH, Lin CM, Huang CF, Hsu WC, Lee CH, Ou KL, et al. Functional recovery in osteoarthritic chondrocytes through hyaluronic acid and platelet-rich plasma-inhibited infrapatellar fat pad adipocytes. Am J Sports Med. 2016;44:2696–705.

    Article  PubMed  Google Scholar 

  80. Bauer C, Niculescu-Morzsa E, Jeyakumar V, Kern D, Spath SS, Nehrer S. Chondroprotective effect of high-molecular-weight hyaluronic acid on osteoarthritic chondrocytes in a co-cultivation inflammation model with M1 macrophages. J Inflamm (Lond). 2016;13:31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe M. Campo.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avenoso, A., D’Ascola, A., Scuruchi, M. et al. Hyaluronan in the experimental injury of the cartilage: biochemical action and protective effects. Inflamm. Res. 67, 5–20 (2018). https://doi.org/10.1007/s00011-017-1084-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1084-9

Keywords

Navigation