Inflammation Research

, Volume 66, Issue 11, pp 999–1009 | Cite as

Inhibitory effect of JAK inhibitor on mechanical stress-induced protease expression by human articular chondrocytes

  • Takahiro Machida
  • Keiichiro NishidaEmail author
  • Yoshihisa Nasu
  • Ryuichi Nakahara
  • Masatsugu Ozawa
  • Ryozo Harada
  • Masahiro Horita
  • Ayumu Takeshita
  • Daisuke Kaneda
  • Aki Yoshida
  • Toshifumi Ozaki
Original Research Paper



To investigate whether janus kinase (JAK) inhibitor exhibits a chondro-protective effect against mechanical stress-induced expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix metalloproteinase (MMPs) in human chondrocytes.

Materials and methods

Normal human articular chondrocytes were seeded onto stretch chambers and incubated with or without tofacitinib (1000 nM) for 12 h before mechanical stimulation or cytokine stimulation. Uni-axial cyclic tensile strain (CTS) (0.5 Hz, 10% elongation, 30 min) was applied and the gene expression levels of type II collagen α1 chain (COL2A1), aggrecan (ACAN), ADAMTS4, ADAMTS5, MMP13, and runt-related transcription factor 2 (RUNX-2) were examined by real-time polymerase chain reaction. Nuclear translocation of RUNX-2 and nuclear factor-κB (NF-κB) was examined by immunocytochemistry, and phosphorylation of mitogen-activated protein kinase (MAPK) and signaling transducer and activator of transcription (STAT) 3 was examined by western blotting. The concentration of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the supernatant was examined by enzyme-linked immunosorbent assay.


COL2A1 and ACAN gene expression levels were decreased by CTS, but these catabolic effects were canceled by tofacitinib. Tofacitinib significantly down-regulated CTS-induced expression of ADAMTS4, ADAMTS5, MMP13, and RUNX2, and the release of IL-6 in supernatant by chondrocytes. Tofacitinib also reduced CTS-induced nuclear translocation of RUNX-2 and NF-κB, and phosphorylation of MAPK and STAT3.


Tofacitinib suppressed mechanical stress-induced expression of ADAMTS4, ADAMTS5, and MMP13 by human chondrocytes through inhibition of the JAK/STAT and MAPK cascades.


Janus kinase Chondrocyte Mechanical stress Tofacitinib Rheumatoid arthritis 


  1. 1.
    Yamaoka K, Saharinen P, Pesu M, Holt VE 3rd, Silvennoinen O, O’Shea JJ. The Janus kinases (Jaks). Genome Biol. 2004;5:253.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Weinblatt ME, Genovese MC, Ho M, Hollis S, Rosiak-Jedrychowicz K, Kavanaugh A, et al. Effects of fostamatinib, an oral spleen tyrosine kinase inhibitor, in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheumatol. 2014;66:3255–64.CrossRefPubMedGoogle Scholar
  3. 3.
    O’Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell. 2002;109(Suppl):S121–31.CrossRefPubMedGoogle Scholar
  4. 4.
    Bourne HR, Briant DJ, Briscoe J, Ferrell J, Freeman M, Hall A, et al. Signaling through enzyme-coupled receptors. In: Alberts B, et al., editors. Molecular biology of the cell. 6th ed. New York: Garland Science; 2009. p. 850–67.Google Scholar
  5. 5.
    van der Heijde D, Tanaka Y, Fleischmann R, Keystone E, Kremer J, Zerbini C, et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum. 2013;65:559–70.CrossRefPubMedGoogle Scholar
  6. 6.
    van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Garcia Meijide JA, Wagner S, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med. 2012;367:508–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Tanaka Y, Maeshima K, Yamaoka K. In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis. Ann Rheum Dis. 2012;71(Suppl 2):i70–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370:2377–86.CrossRefPubMedGoogle Scholar
  9. 9.
    Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367:495–507.CrossRefPubMedGoogle Scholar
  10. 10.
    Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis—two unequal siblings. Nat Rev Rheumatol. 2015;11:606–15.CrossRefPubMedGoogle Scholar
  11. 11.
    Krzeski P, Buckland-Wright C, Balint G, Cline GA, Stoner K, Lyon R, et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther. 2007;9:R109.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tetsunaga T, Nishida K, Furumatsu T, Naruse K, Hirohata S, Yoshida A, et al. Regulation of mechanical stress-induced MMP-13 and ADAMTS-5 expression by RUNX-2 transcriptional factor in SW1353 chondrocyte-like cells. Osteoarthr Cartil. 2011;19:222–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Saito T, Nishida K, Furumatsu T, Yoshida A, Ozawa M, Ozaki T. Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil. 2013;21:165–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Ozawa M, Nishida K, Yoshida A, Saito T, Harada R, Machida T, et al. Hyaluronan suppresses mechanical stress-induced expression of catabolic enzymes by human chondrocytes via inhibition of IL-1beta production and subsequent NF-kappaB activation. Inflamm Res. 2015;64:243–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Naruse K, Sai X, Yokoyama N, Sokabe M. Uni-axial cyclic stretch induces c-src activation and translocation in human endothelial cells via SA channel activation. FEBS Lett. 1998;441:111–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Naruse K, Yamada T, Sokabe M. Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol. 1998;274:H1532–8.PubMedGoogle Scholar
  17. 17.
    Agarwal S, Long P, Gassner R, Piesco NP, Buckley MJ. Cyclic tensile strain suppresses catabolic effects of interleukin-1beta in fibrochondrocytes from the temporomandibular joint. Arthritis Rheum. 2001;44(3):608–17.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Meyer DM, Jesson MI, Li X, Elrick MM, Funckes-Shippy CL, Warner JD, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm. 2010;7:41.CrossRefGoogle Scholar
  19. 19.
    Larsen A, Dale K, Eek M. Radiographic evaluation of rheumatoid arthritis and related conditions by standard reference films. Acta Radiol. 1977;18:481–91.Google Scholar
  20. 20.
    Seki E, Matsushita I, Sugiyama E, Taki H, Shinoda K, Hounoki H, et al. Radiographic progression in weight-bearing joints of patients with rheumatoid arthritis after TNF-blocking therapies. Clin Rheumatol. 2009;28:453–60.CrossRefPubMedGoogle Scholar
  21. 21.
    Smolen JS, Landewe R, Breedveld FC, Buch M, Burmester G, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann Rheum Dis. 2014;73:492–509.CrossRefPubMedGoogle Scholar
  22. 22.
    Kyburz D, Finckh A. The importance of early treatment for the prognosis of rheumatoid arthritis. Swiss Med Wkly. 2013;143:w13865.PubMedGoogle Scholar
  23. 23.
    Burmester GR, Blanco R, Charles-Schoeman C, Wollenhaupt J, Zerbini C, Benda B, et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet. 2013;381:451–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Maeshima K, Yamaoka K, Kubo S, Nakano K, Iwata S, Saito K, et al. The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferon-gamma and interleukin-17 production by human CD4+ T cells. Arthritis Rheum. 2012;64:1790–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Salgado E, Maneiro JR, Carmona L, Gomez-Reino JJ. Safety profile of protein kinase inhibitors in rheumatoid arthritis: systematic review and meta-analysis. Ann Rheum Dis. 2014;73:871–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Strand V, Kremer J, Wallenstein G, Kanik KS, Connell C, Gruben D, et al. Effects of tofacitinib monotherapy on patient-reported outcomes in a randomized phase 3 study of patients with active rheumatoid arthritis and inadequate responses to DMARDs. Arthritis Res Ther. 2015;17:307.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Koizumi H, Arito M, Endo W, Kurokawa MS, Okamoto K, Omoteyama K, et al. Effects of tofacitinib on nucleic acid metabolism in human articular chondrocytes. Mod Rheumatol. 2015;25:522–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Endo W, Arito M, Sato T, Kurokawa MS, Omoteyama K, Iizuka N, et al. Effects of sulfasalazine and tofacitinib on the protein profile of articular chondrocytes. Mod Rheumatol. 2014;24:844–50.CrossRefPubMedGoogle Scholar
  29. 29.
    Salter DM, Millward-Sadler SJ, Nuki G, Wright MO. Integrin-interleukin-4 mechanotransduction pathways in human chondrocytes. Clin Orthop Relat Res 2001;(391 Suppl):S49–60.CrossRefGoogle Scholar
  30. 30.
    Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, et al. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res. 1999;84:1127–36.CrossRefPubMedGoogle Scholar
  31. 31.
    Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res. 2000;47:23–37.CrossRefPubMedGoogle Scholar
  32. 32.
    Millward-Sadler SJ, Khan NS, Bracher MG, Wright MO, Salter DM. Roles for the interleukin-4 receptor and associated JAK/STAT proteins in human articular chondrocyte mechanotransduction. Osteoarthr Cartil. 2006;14:991–1001.CrossRefPubMedGoogle Scholar
  33. 33.
    Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum. 2002;46:114–23.CrossRefPubMedGoogle Scholar
  34. 34.
    DeGroot J, Verzijl N, Jacobs KM, Budde M, Bank RA, Bijlsma JW, et al. Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthr Cartil. 2001;9:720–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Huang CY, Lai KY, Hung LF, Wu WL, Liu FC, Ho LJ. Advanced glycation end products cause collagen II reduction by activating Janus kinase/signal transducer and activator of transcription 3 pathway in porcine chondrocytes. Rheumatology. 2011;50:1379–89.CrossRefPubMedGoogle Scholar
  36. 36.
    Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets. 2010;11:599–613.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Katz S, Boland R, Santillan G. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int J Biochem Cell Biol. 2006;38:2082–91.CrossRefPubMedGoogle Scholar
  38. 38.
    Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J. Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol. 2006;207:454–60.CrossRefPubMedGoogle Scholar
  39. 39.
    Catterall JB, Carrere S, Koshy PJ, Degnan BA, Shingleton WD, Brinckerhoff CE, et al. Synergistic induction of matrix metalloproteinase 1 by interleukin-1alpha and oncostatin M in human chondrocytes involves signal transducer and activator of transcription and activator protein 1 transcription factors via a novel mechanism. Arthritis Rheum. 2001;44:2296–310.CrossRefPubMedGoogle Scholar
  40. 40.
    Yammani RR, Long D, Loeser RF. Interleukin-7 stimulates secretion of S100A4 by activating the JAK/STAT signaling pathway in human articular chondrocytes. Arthritis Rheum. 2009;60:792–800.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lim H, Kim HP. Matrix metalloproteinase-13 expression in IL-1beta-treated chondrocytes by activation of the p38 MAPK/c-Fos/AP-1 and JAK/STAT pathways. Arch Pharm Res. 2011;34:109–17.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang P, Zhu F, Lee NH, Konstantopoulos K. Shear-induced interleukin-6 synthesis in chondrocytes: roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-kappaB activation. J Biol Chem. 2010;285:24793–804.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mohtai M, Gupta MK, Donlon B, Ellison B, Cooke J, Gibbons G, et al. Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. J Orthop Res. 1996;14:67–73.CrossRefPubMedGoogle Scholar
  44. 44.
    Mawatari T, Lindsey DP, Harris AH, Goodman SB, Maloney WJ, Smith RL. Effects of tensile strain and fluid flow on osteoarthritic human chondrocyte metabolism in vitro. J Orthop Res. 2010;28:907–13.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Takahiro Machida
    • 1
  • Keiichiro Nishida
    • 1
    Email author
  • Yoshihisa Nasu
    • 2
  • Ryuichi Nakahara
    • 3
  • Masatsugu Ozawa
    • 4
  • Ryozo Harada
    • 1
  • Masahiro Horita
    • 1
  • Ayumu Takeshita
    • 1
  • Daisuke Kaneda
    • 1
  • Aki Yoshida
    • 1
  • Toshifumi Ozaki
    • 1
  1. 1.Department of Orthopaedic SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
  2. 2.Department of Medical Materials for Musculoskeletal ReconstructionOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
  3. 3.Department of Musculoskeletal TraumatologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
  4. 4.Department of Orthopaedic SurgeryOkayama City HospitalOkayamaJapan

Personalised recommendations