Skip to main content
Log in

Safety and efficiency of active immunization with detoxified antigen against scorpion venom: side effect evaluation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The efficiency and safety of vaccine are the most important properties, however, as any medication, it can induce side effects. This prophylactic therapy could be used to prevent the lethal and pathophysiological effects induced after scorpion envenomation.

Methods

In this study, detoxified venom associated to alum adjuvant (V*alum) is used as a vaccine against scorpion venom for immunization of mice. We evaluate the safety and the inflammatory response of this vaccine. We also investigated the protective effect of this formulation against the toxicity of native Androctonus australis hector venom.

Results

Results showed no adverse events occurred after immunization of animals. This active immunization of animals did not cause change in vascular permeability, no edema formation in the studied organs. Furthermore, there are no IgE production in sera, nor change in the morphology of the mast cells in skin tissues. However, low inflammatory response triggered by activating the recruitment of eosinophils associated to IL-4 and IL-5 release was observed. All immunized animals are protected from the toxic effects of native venom until 6 LD50 and to 7 LD50 after the second challenge.

Conclusion

This safe vaccine preparation seems to induce a long-term protection without any risk of deleterious inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ismail M. The scorpion envenoming syndrome. Toxicon. 1995;33(7):825–58.

    Article  CAS  PubMed  Google Scholar 

  2. Hammoudi-Triki D, Ferquel E, Robbe-Vincent A, Bon C, Choumet V, Laraba-Djebari F. Epidemiological data, clinical admission gradation and biological quantification by ELISA of scorpion envenomations in Algeria: effect of immunotherapy. Trans R Soc Trop Med Hyg. 2004;98(4):240–50.

    Article  PubMed  Google Scholar 

  3. Laraba-Djebari F, Legros C, Crest M, Céard B, Romi R, Mansuelle P, et al. The kaliotoxin family enlarged. Purification, characterization, and precursor nucleotide sequence of KTX2 from Androctonus australis venom. J Biol Chem. 1994;269(52):32835–43.

    CAS  PubMed  Google Scholar 

  4. Abib L, Laraba-Djebari F. Effect of gamma irradiation on toxicity and immunogenicity of Androctonus australis hector venom. Can J Physiol Pharmacol. 2003;81(12):1118–24.

    Article  CAS  PubMed  Google Scholar 

  5. Laraba-Djebari F, Adi-Bessalem S, Hammoudi-Triki D. Scorpion venoms: pathogenesis and biotherapies. In: Gopalakrishnakone P, Possani LD, Schwartz EF, de la Vega RCR, editors. Scorpion venoms. Berlin: Springer Netherlands; 2015;4. p. 63–85. doi:10.1007/978-94-007-6404-0_2.

  6. Nouri A, Laraba-Djebari F. Enhancement of long-lasting immunoprotective effect against Androctonus australis hector envenomation using safe antigens: comparative role of MF59 and Alum adjuvants. Vaccine. 2015;33(43):5756–63.

    Article  CAS  PubMed  Google Scholar 

  7. Nait Mohamed FA, Laraba-Djebari F. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: safe immunoprotective approach against scorpion envenoming. Vaccine. 2016;34(24):2692–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol. 2004;82(5):497–505.

    Article  CAS  PubMed  Google Scholar 

  9. Hogenesch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol. 2013;3:406.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Noe SM, Green MA, HogenEsch H, Hem SL. Mechanism of immunopotentiation by aluminum-containing adjuvants elucidated by the relationship between antigen retention at the inoculation site and the immune response. Vaccine. 2010;28(20):3588–94.

    Article  CAS  PubMed  Google Scholar 

  11. de Veer M, Kemp J, Chatelier J, Elhay MJ, Meeusen EN. The kinetics of soluble and particulate antigen trafficking in the afferent lymph, and its modulation by aluminum-based adjuvant. Vaccine. 2010;28(40):6597–602.

    Article  PubMed  Google Scholar 

  12. Destexhe E, Prinsen MK, van Schöll I, Kuper CF, Garçon N, Veenstra S, et al. Evaluation of C-reactive protein as an inflammatory biomarker in rabbits for vaccine nonclinical safety studies. J Pharmacol Toxicol Methods. 2013;68(3):367–73.

    Article  CAS  PubMed  Google Scholar 

  13. Nakayama T. An inflammatory response is essential for the development of adaptive immunity-immunogenicity and immunotoxicity. Vaccine. 2016;34(47):5815–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lu F, Hogenesch H. Kinetics of the inflammatory response following intramuscular injection of aluminum adjuvant. Vaccine. 2013;31(37):3979–86.

    Article  CAS  PubMed  Google Scholar 

  15. Kashiwagi Y, Miyata A, Kumagai T, Maehara K, Suzuki E, Nagai T, et al. Production of inflammatory cytokines in response to diphtheria-pertussis-tetanus (DPT), haemophilus influenzae type b (Hib), and 7-valent pneumococcal (PCV7) vaccines. Hum Vaccin Immunother. 2014;10(3):677–85.

    Article  CAS  PubMed  Google Scholar 

  16. Buonaguro L, Pulendran B. Immunogenomics and systems biology of vaccines. Immunol Rev. 2011;239(1):197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lila BA, Laraba-Djebari F. Enhanced immune sera and vaccine: safe approach to treat scorpion envenoming. Vaccine. 2011;29(48):8951–9.

    Article  CAS  PubMed  Google Scholar 

  18. Li XM, Serebrisky D, Lee SY, Huang CK, Bardina L, Schofield BH, et al. A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol. 2000;106(1 Pt 1):150–8.

    Article  CAS  PubMed  Google Scholar 

  19. Matos IM, Teixeira MM, Leite R, Freire-Maia L. Pharmacological evidence that neuropeptides mediate part of the actions of scorpion venom on the guinea pig ileum. Eur J Pharmacol. 1999;368(2–3):231–6.

    Article  CAS  PubMed  Google Scholar 

  20. Mollica JQ, et al. Anti-inflammatory activity of American yam Dioscorea trifida Lf in food allergy induced by ovalbumin in mice. J Funct Foods. 2013;5(4):1975–84.

    Article  CAS  Google Scholar 

  21. Kroegel C, Yukawa T, Dent G, Venge P, Chung KF, Barnes PJ. Stimulation of degranulation from human eosinophils by platelet-activating factor. J Immunol. 1989;142(10):3518–26.

    CAS  PubMed  Google Scholar 

  22. Li XM, Schofield BH, Wang QF, Kim KH, Huang SK. Induction of pulmonary allergic responses by antigen-specific Th2 cells. J Immunol. 1998;160(3):1378–84.

    CAS  PubMed  Google Scholar 

  23. Laraba-Djebari F, Hammoudi D. Use of toxic fraction isolated from Algerian Androctonus australis hector scorpion venom for the assessment of anti-venom serum. Arch Inst Pasteur Alger. 1998;62:254–66.

    CAS  PubMed  Google Scholar 

  24. Miliauskas JR, Mukherjee T, Dixon B. Postimmunization (vaccination) injection-site reactions. A report of four cases and review of the literature. Am J Surg Pathol. 1993;17(5):516–24.

    Article  CAS  PubMed  Google Scholar 

  25. Böhler-Sommeregger K, Lindemayr H. Contact sensitivity to aluminium. Contact Dermat. 1986;15(5):278–81.

    Article  Google Scholar 

  26. Cosnes A, Flechet ML, Revuz J. Inflammatory nodular reactions after hepatitis B vaccination due to aluminium sensitization. Contact Dermat. 1990;23(2):65–7.

    Article  CAS  Google Scholar 

  27. Cominos D, Strutton G, Busmanis I. Granulomas associated with tetanus toxoids immunization. Am J Dermatopathol. 1993;15(2):114–7.

    Article  CAS  PubMed  Google Scholar 

  28. Gonlugur U, Gonlugur TE. Non-allergic eosinophilic inflammation. Immunol Invest. 2006;35(1):29–45.

    Article  CAS  PubMed  Google Scholar 

  29. Blanchard C, Rothenberg ME. Biology of the eosinophil. Adv Immunol. 2009;101:81–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walls RS. Eosinophil response to alum adjuvants: involvement of T cells in non-antigen-dependent mechanisms. Proc Soc Exp Biol Med. 1977;156(3):431–5.

    Article  CAS  PubMed  Google Scholar 

  31. Maletto BA, Ropolo AS, Alignani DO, Liscovsky MV, Ranocchia RP, Moron VG, et al. Presence of neutrophil-bearing antigen in lymphoid organs of immune mice. Blood. 2006;108(9):3094–102.

    Article  CAS  PubMed  Google Scholar 

  32. Becky Kelly EA, Busse WW, Jarjour NN. A comparison of the airway response to segmental antigen bronchoprovocation in atopic asthma and allergic rhinitis. J Allergy Clin Immunol. 2003;111(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  33. Finkelman FD, Katona IM, Urban JF Jr, Holmes J, Ohara J, Tung AS, et al. IL-4 is required to generate and sustain in vivo IgE responses. J Immunol. 1988;141(7):2335–2341.

    CAS  PubMed  Google Scholar 

  34. Snapper CM, Finkelman FD, Paul WE. Regulation of IgG1 and IgE production by interleukin 4. Immunol Rev. 1988;102:51–75.

    Article  CAS  PubMed  Google Scholar 

  35. Mori A, Yamamoto K, Suko M, Watanabe N, Ito M, Miyamoto T, et al. Interleukin-4 gene expression in high and low IgE responder mice. Int Arch Allergy Appl Immunol. 1990;92(1):100–2.

    Article  CAS  PubMed  Google Scholar 

  36. Yanase N, Toyota H, Hata K, Yagyu S, Seki T, Harada M, et al. OVA-bound nanoparticles induce OVA-specific IgG1, IgG2a, and IgG2b responses with low IgE synthesis. Vaccine. 2014;32(45):5918–24.

    Article  CAS  PubMed  Google Scholar 

  37. Sugai M, Gonda H, Kusunoki T, Katakai T, Yokota Y, Shimizu A. Essential role of Id2 in negative regulation of IgE class switching. Nat Immunol. 2003;4(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  38. Geha RS, Jabara HH, Brodeur SR. The regulation of immunoglobulin E class-switch recombination. Nat Rev Immunol. 2003;3(9):721–32.

    Article  CAS  PubMed  Google Scholar 

  39. Galli SJ, Wershil BK. The two faces of the mast cell. Nature. 1996;381(6577):21–2.

    Article  CAS  PubMed  Google Scholar 

  40. Swedin L, Ellis R, Neimert-Andersson T, Ryrfeldt A, Nilsson G, Inman M, et al. Prostaglandin modulation of airway inflammation and hyperresponsiveness in mice sensitized without adjuvant. Prostaglandins Other Lipid Mediat. 2010;92(1–4):44–53. doi:10.1016/j.prostaglandins.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  41. Yuan M, Li J, Lv J, Mo X, Yang C, Chen X, et al. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca2+ mobilization. Toxicol Appl Pharmacol. 2012;264(3):462–9.

    Article  CAS  PubMed  Google Scholar 

  42. Samee H, Li ZX, Lin H, Khalid J, Guo YC. Anti-allergic effects of ethanol extracts from brown seaweeds. J Zhejiang Univ Sci B. 2009;10(2):147–53.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Belnoue E, Pihlgren M, McGaha TL, Tougne C, Rochat AF, Bossen C, et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood. 2008;111(5):2755–64.

    Article  CAS  PubMed  Google Scholar 

  44. Minges Wols HA, Underhill GH, Kansas GS, Witte PL. The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity. J Immunol. 2002;169(8):4213–21.

    Article  CAS  PubMed  Google Scholar 

  45. Lofano G, Mancini F, Salvatore G, Cantisani R, Monaci E, Carrisi C, et al. Oil-in-water emulsion MF59 increases germinal center B cell differentiation and persistence in response to vaccination. J Immunol. 2015;195(4):1617–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Laraba-Djebari.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachsais, N., Boussag-Abib, L. & Laraba-Djebari, F. Safety and efficiency of active immunization with detoxified antigen against scorpion venom: side effect evaluation. Inflamm. Res. 66, 765–774 (2017). https://doi.org/10.1007/s00011-017-1055-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1055-1

Keywords

Navigation