Skip to main content
Log in

2-Hydroxy-4-methoxy benzoic acid attenuates the carbon tetra chloride-induced hepatotoxicity and its lipid abnormalities in rats via anti-inflammatory and antioxidant mechanism

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background and aim

Liver inflammation stimulates various inflammatory cytokines and initiates injury through oxidative stress. The aim of this study was to curtaile the liver injury through natural principles such as 2-hydroxy-4-methoxy benzoic acid (HMBA).

Methods

The current study examines the hepatoprotective and lipid lowering effect of HMBA against carbon tetra chloride (CCl4)-mediated liver toxicity in male Wistar rats.

Results

The hepatoprotective effects of HMBA against CCl4-induced liver damage, were evident from low serum transaminases activities, reduced hepatic lipid peroxidation and collagen content, restoration of total glutathione, and recouping of the inflammatory cytokines, such as TNF-α, IL-1β, IL-10, and IL-6 levels. Further it was found that the treatment of HMBA, significantly lowered (P<0.01) the levels of total cholesterol, triglycerides, free fatty acids and phospholipids in serum and liver. To investigate the mechanism behind the hepatoprotective and lipid lowering effect, the activities of heme oxygenase (HO1), and myeloperoxidase (MPO) were measured and expression levels were quantified through western blot following HMBA administration. The results showed that HMBA administration significantly decreased the activity of HO1 (P<0.001), and increased the activity of MPO (P<0.001); further similar finding was observed in western analysis. The hepatoprotective, lipid lowering and shifting key defensive enzyme activities are similar to that of standard drug such as N-acetylcysteine.

Conclusion

HMBA is competent of shielding liver from CCl4-induced hepatotoxicity, and this is associated with the lipid lowering, inflammatory cytokine restoration and induction of defensive enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Michalopoulos GK. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology. 2017;65:1384–92.

    Article  PubMed  Google Scholar 

  2. Wang S, Shi XL, Feng M, Wang X, Zhang ZH, Zhao X, et al. Puerarin protects against CCl4-induced liver fibrosis in mice: possible role of PARP- 1 inhibition. Int Immunopharmacol. 2016;38:238–45.

    Article  CAS  PubMed  Google Scholar 

  3. Li R, Wang Y, Zhao E, Wu K, Li W, Shi L, et al. Maresin, a proresolving lipid mediator, mitigates carbon tetrachloride-induced liver injury in mice. Oxid Med Cell Longev. 2016;2016:9203716.

    PubMed  PubMed Central  Google Scholar 

  4. Francisqueti FV, Chiaverini LC, Santos KC, Minatel IO, Ronchi CB, Ferron AJ, et al. The role of oxidative stress on the pathophysiology of metabolic syndrome. Rev Assoc Med Bras. 1992;63:85–91.

    Article  Google Scholar 

  5. Sorokin A. Nitric oxide synthase and cyclooxygenase pathways: a complex interplay in cellular signaling. Curr Med Chem. 2016;23:2559–78.

    Article  CAS  PubMed  Google Scholar 

  6. Arcucci A, Ruocco MR, Granato G, Sacco AM, Montagnani S. Cancer: an oxidative crosstalk between solid tumor cells and cancer associated fibroblasts. Biomed Res Int. 2016;2016:4502846.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Forman HJ. Redox signaling: an evolution from free radicals to aging. Free Radic Biol Med. 2016;97:398–407.

    Article  CAS  PubMed  Google Scholar 

  8. Tibaut M, Petrovič D. Oxidative stress genes, antioxidants and coronary artery disease in type 2 diabetes mellitus. Cardiovasc Hematol Agents Med Chem. 2016;14:23–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lushchak VI. Free radicals, reactive oxygen species, oxidative stresses and their classifications. Ukr Biochem J. 2015;87:11–8.

    Article  CAS  PubMed  Google Scholar 

  10. Gasparovic AC, Milkovic L, Sunjic SB, Zarkovic N. Cancer growth regulation by 4-hydroxynonenal. Free Radic Biol Med. 2017. doi:10.1016/j.freeradbiomed.2017.01.030

    PubMed  Google Scholar 

  11. Hawk MA, McCallister C, Schafer ZT. Antioxidant activity during tumor progression: a necessity for the survival of cancer cells? Cancers (Basel). 2016;8:113–21.

    Article  Google Scholar 

  12. Crosas-Molist E, Bertran E, Fabregat I. Cross-talk between TGF-β and NADPH oxidases during liver fibrosis and hepatocarcinogenesis. Curr Pharm Des. 2015;21:5964–76.

    Article  CAS  PubMed  Google Scholar 

  13. Tsukiyama-Kohara K. Role of oxidative stress in hepatocarcinogenesis induced by hepatitis C virus. Int J Mol Sci. 2012;13:15271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie Y, Hao H, Wang H, Guo C, Kang A, Wang G. Reversing effects of lignans on CCl4-induced hepatic CYP450 down regulation by attenuating oxidative stress. J Ethnopharmacol. 2014;155:213–21.

    Article  CAS  PubMed  Google Scholar 

  15. Taniguchi M, Takeuchi T, Nakatsuka R, Watanabe T, Sato K. Molecular process in acute liver injury and regeneration induced by carbon tetrachloride. Life Sci. 2004;75:1539–49.

    Article  CAS  PubMed  Google Scholar 

  16. Cui Y, Yang X, Lu X, Chen J, Zhao Y. Protective effects of polyphenols-enriched extract from Huangshan Maofeng green tea against CCl4-induced liver injury in mice. Chem Biol Interact. 2014;220:75–83.

    Article  CAS  PubMed  Google Scholar 

  17. Rivera H, Shibayama M, Tsutsumi V, Perez-Alvarez V, Muriel P. Resveratrol and trimethylated resveratrol protect from acute liver damage induced by CCl4 in the rat. J Appl Toxicol. 2008;28:147–55.

    Article  CAS  PubMed  Google Scholar 

  18. Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 2017;66:180–90.

    Article  PubMed  Google Scholar 

  19. Das S, Bisht SS. The bioactive and therapeutic potential of Hemidesmus indicus R. Br. (Indian Sarsaparilla) root. Phytother Res. 2013;27:791–801.

    Article  PubMed  Google Scholar 

  20. Sethi A, Bhatia A, Srivastava S, Bhatia G, Khan MM, Khanna AK, et al. Pregnane glycoside from Hemidesmus indicus as a potential anti-oxidant and anti-dyslipidemic agent. Nat Prod Res. 2010;24:1371–8.

    Article  CAS  PubMed  Google Scholar 

  21. Alam MI, Gomes A. Viper venom-induced inflammation and inhibition of free radical formation by pure compound (2-hydroxy-4-methoxy benzoic acid) isolated and purified from anantamul (Hemidesmus indicus R. BR) root extract. Toxicon. 1998;36:207–15.

    Article  CAS  PubMed  Google Scholar 

  22. Saravanan N, Nalini N. Effect of 2-hydroxy 4-methoxy benzoic acid on an experimental model of hyperlipidaemia, induced by chronic ethanol treatment. J Pharm Pharmacol. 2007;59:1537–42.

    Article  PubMed  Google Scholar 

  23. Saravanan N, Nalini N. Inhibitory effect of Hemidesmus indicus and its active principle 2-hydroxy 4-methoxy benzoic acid on ethanol-induced liver injury. Fundam Clin Pharmacol. 2007;21:507–14.

    Article  CAS  PubMed  Google Scholar 

  24. Gayathri M, Kannabiran K. Effect of 2-hydroxy-4-methoxy benzoic acid from the roots of Hemidesmus indicus on streptozotocin-induced diabetic rats. Indian J Pharm Sci. 2009;71:581–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gayathri M, Kannabiran K. Effect of 2-hydroxy-4-methoxy benzoic acid isolated from Hemidesmus indicus on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin-induced diabetic rats. Indian J Pharm Sci. 2012;74:474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gandhi CR, Sproat LA, Subbotin VM. Increased hepatic endothelin-1 levels and endothelin receptor density in cirrhotic rats. Life Sci. 1996;58:55–62.

    Article  CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RL. Protein measurement with Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  28. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–212.

    Article  CAS  PubMed  Google Scholar 

  29. Bradbury P, Gordon KC. Connective tissue and stain. In: Bancroft JD, Stevens A, editors. Theory and practice of histological techniques. New York: Churchill Livingston Press; 1990. p. 119–42.

    Google Scholar 

  30. Bradley PP, Christensen RD, Rothstein G. Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood. 1982;60:618–22.

    CAS  PubMed  Google Scholar 

  31. Maines M. Carbon monoxide and nitric oxide homology: differential modulation of heme oxygenases in brain and detection of protein and activity. Methods Enzymol. 1996;268:473–88.

    Article  CAS  PubMed  Google Scholar 

  32. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1951;226:497–509.

    Google Scholar 

  33. Parekh AL, Jung DH. Cholesterol determination with ferric chloride-uranyl acetate and sulphuric acid ferrous sulphate reagent. Anal Biochem. 1970;42:1423–7.

    CAS  Google Scholar 

  34. Rouser G, Fleisher S, Yamanoto A. Two-dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970;5:494–6.

    Article  CAS  PubMed  Google Scholar 

  35. Rice EW. Triglycerides (neutral fats) in serum. In: Mac-Donald RP, editor. Standard methods of clinical chemistry, vol. 6. New York: Academic Press; 1970. p. 215–222.

  36. Hron WT, Menahan LA. A sensitive method for the determination of free fatty acids in plasma. J Lipid Res. 1981;23:377–81.

    Google Scholar 

  37. Saravanan N, Rajasankar S, Nalini N. Antioxidant effect of 2-hydroxy-4-methoxy benzoic acid on ethanol-induced hepatotoxicity in rats. J Pharm Pharmacol. 2007;59:445–53.

    Article  CAS  PubMed  Google Scholar 

  38. Singh S, Khera R, Allen AM, Murad MH, Loomba R. Comparative effectiveness of pharmacological interventions for nonalcoholic steatohepatitis: a systematic review and network meta-analysis. Hepatology. 2015;62:1417–32.

    Article  CAS  PubMed  Google Scholar 

  39. Vendemiale G, Grattagliano I, Caruso ML, Serviddio G, Valentini AM, Pirrelli M, et al. Increased oxidative stress in dimethylnitrosamine-induced liver fibrosis in the rat: effect of N-acetylcysteine and interferon-α. Toxicol Appl Pharmacol. 2001;175:130–9.

    Article  CAS  PubMed  Google Scholar 

  40. Al-Rasheed NM, Attia HA, Mohamad RA, Al-Rasheed NM, Al Fayez M, Al-Amin MA. Date fruits inhibit hepatocyte apoptosis and modulate the expression of hepatocyte growth factor, cytochrome P450 2E1 and heme oxygenase-1 in carbon tetrachloride-induced liver fibrosis. Arch Physiol Biochem. 2016;14:1–15.

    Google Scholar 

  41. Chiu HW, Hua KF. Hepatoprotective effect of wheat-based solid-state fermented Antrodia cinnamomea in carbon tetrachloride-induced liver injury in rat. PLoS One. 2016;11:e0153087.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pulli B, Ali M, Iwamoto Y, Zeller MW, Schob S, Linnoila JJ, et al. Myeloperoxidase-hepatocyte-stellate cell cross talk promotes hepatocyte injury and fibrosis in experimental nonalcoholic steatohepatitis. Antioxid Redox Signal. 2015;23:1255–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rensen SS, Bieghs V, Xanthoulea S, Arfianti E, Bakker JA, Shiri-Sverdlov R, et al. Neutrophil-derived myeloperoxidase aggravates non- alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS One. 2012;7(12):e52411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alkhouri N, Morris-Stiff G, Campbell C, Lopez R, Tamimi TA, Yerian L, et al. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int. 2012;32:297–302.

    Article  CAS  PubMed  Google Scholar 

  45. van Dalen CJ, Winterbourn CC, Senthilmohan R, Kettle AJ. Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation. J Biol Chem. 2000;275:11638–44.

    Article  PubMed  Google Scholar 

  46. Doré S, Takahashi M, Ferris CD, Zakhary R, Hester LD, Guastella D, et al. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci USA. 1999;96:2445–50.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zeynalov E, Shah ZA, Li RC, Doré S. Heme oxygenase 1 is associated with ischemic preconditioning-induced protection against brain ischemia. Neurobiol Dis. 2009;35:264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin X, Chen Y, Lv S, Tan S, Zhang S, Huang R, et al. Gypsophila elegans isoorientin attenuates CCl4-induced hepatic fibrosis in rats via modulation of NF-κB and TGF-β1/Smad signaling pathways. Int Immunopharmacol. 2015;28:305–12.

    Article  CAS  PubMed  Google Scholar 

  49. Mandal A, Bishayee A. Trianthema portulacastrum Linn. displays anti-inflammatory responses during chemically induced rat mammary tumorigenesis through simultaneous and differential regulation of NF-κB and Nrf2 signaling pathways. Int J Mol Sci. 2015;16:2426–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Surh YJ. NF-κB and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac J Clin Nutr. 2008;17(Suppl 1):269–72.

    CAS  PubMed  Google Scholar 

  51. Dreger H, Westphal K, Wilck N, Baumann G, Stangl V, Stangl K, et al. Protection of vascular cells from oxidative stress by proteasome inhibition depends on Nrf2. Cardiovasc Res. 2010;85:395–403.

    Article  CAS  PubMed  Google Scholar 

  52. Sengupta D, Chowdhury KD, Sarkar A, Paul S, Sadhukhan GC. Berberine and S allyl cysteine mediated amelioration of DEN + CCl4 induced hepatocarcinoma. Biochim Biophys Acta. 2014;1840:219–44.

    Article  CAS  PubMed  Google Scholar 

  53. Yang X, Yang S, Guo Y, Jiao Y, Zhao Y. Compositional characterisation of soluble apple polysaccharides, and their antioxidant and hepatoprotective effects on acute CCl4-caused liver damage in mice. Food Chem. 2013;138:1256–64.

    Article  CAS  PubMed  Google Scholar 

  54. Noh JR, Gang GT, Kim YH, Yang KJ, Hwang JH, Lee HS, et al. Antioxidant effects of the chestnut (Castanea crenata) inner shell extract in t-BHP-treated HepG2 cells, and CCl4- and high-fat diet-treated mice. Food Chem Toxicol. 2010;48:3177–83.

    Article  CAS  PubMed  Google Scholar 

  55. Reyes-Gordillo K, Segovia J, Shibayama M, Vergara P, Moreno MG, Muriel P. Curcumin protects against acute liver damage in the rat by inhibiting NF-κB, proinflammatory cytokines production and oxidative stress. Biochim Biophys Acta. 2007;1770:989–96.

    Article  CAS  PubMed  Google Scholar 

  56. Al-Rasheed NM, Fadda LM, Ali HM, Abdel Baky NA, El-Orabi NF, Al-Rasheed NM, et al. New mechanism in the modulation of carbon tetrachloride hepatotoxicity in rats using different natural antioxidants. Toxicol Mech Methods. 2016;26:243–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the International Scientific Partnership Program at King Saud University for funding this research work through ISPP # 0084.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghedeir M. Alshammari or Thirunavukkarasu Chinnasamy.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshammari, G.M., Balakrishnan, A. & Chinnasamy, T. 2-Hydroxy-4-methoxy benzoic acid attenuates the carbon tetra chloride-induced hepatotoxicity and its lipid abnormalities in rats via anti-inflammatory and antioxidant mechanism. Inflamm. Res. 66, 753–763 (2017). https://doi.org/10.1007/s00011-017-1054-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1054-2

Keywords

Navigation