Inflammation Research

, Volume 66, Issue 8, pp 701–709 | Cite as

Preclinical evaluation of the urokinase receptor-derived peptide UPARANT as an anti-inflammatory drug

  • Serena Boccella
  • Elisabetta Panza
  • Liliana Lista
  • Carmela Belardo
  • Angela Ianaro
  • Mario De Rosa
  • Vito de NovellisEmail author
  • Vincenzo PavoneEmail author
Original Research Paper



Inflammation plays a key role in the pathogenesis of several chronic diseases. The urokinase plasminogen activator receptor (uPAR) exerts a plethora of functions in both physiological and pathological processes, including inflammation.

Objective and design

In this study, we evaluated the anti-inflammatory effect of a novel peptide ligand of uPAR, UPARANT, in different animal models of inflammation.

Subjects and treatment

Rats and mice were divided in different groups (n = 5) for single or repeated administration of vehicle (9% DMSO in 0.9% NaCl), UPARANT (6, 12 and 24 mg/kg) or dexamethasone (2 mg/kg). Animals were subjected to carrageenan-induced paw oedema or zymosan-induced peritonitis.


UPARANT effects were tested on: (1) the carrageenan-induced paw oedema volume, (2) the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the nitrite/nitrate (NOx) levels in the paw exudates, (3) cells recruitment into the peritoneal cavity after zymosan injection and (4) NOx levels in the peritoneal lavage.


UPARANT (12 and 24 mg/kg) reduced inflammation in both experimental paradigms. Analysis of pro-inflammatory enzymes revealed that administration of UPARANT reduced iNOS, COX2 and NO over-production.


Our study provides a solid evidence that UPARANT reduces the severity of inflammation in diverse animal models, thus representing a novel anti-inflammatory drug with potential advantages with respect to the typical steroidal agents.


Inflammation Urokinase-type plasminogen activator receptor UPARANT 


  1. 1.
    Ploug M, Rønne E, Behrendt N, Jensen AL, Blasi F, Danø K. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem. 1991;266:1926–33.PubMedGoogle Scholar
  2. 2.
    Ploug ML, Ellis V. Structure–function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom alpha-neurotoxins. FEBS Lett. 1994;349:163–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Høyer-Hansen G, Rønne E, Solberg H, Behrendt N, Ploug M, Lund LR, Ellis V, Danø K. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J Biol Chem. 1992;267:18224–9.PubMedGoogle Scholar
  4. 4.
    Kjaergaard ML, Hansen LV, Jacobsen B, Gardsvoll H, Ploug M. Structure and ligand interactions of the urokinase receptor (uPAR). Front Biosci. 2008;13:5441–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Hajjar KA. Cellular receptors in the regulation of plasmin generation. Thromb Haemost. 1995;74:294–301.PubMedGoogle Scholar
  6. 6.
    Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev. 2003;22:205–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Gyetko MR, Aizenberg D, Mayo-Bond L, Pu J. Urokinase deficient and urokinase receptor-deficient mice have impaired neutrophil antimicrobial activation in vitro. LeukocBiol. 2004;76:648–56.Google Scholar
  8. 8.
    Selleri C, Montuori N, Ricci P, Ricci P, Visconte V, Carriero MV. Involvement of the urokinase type plasminogen activator receptor in hematopoietic stem cell mobilization. Blood. 2005;105:2198–205.CrossRefPubMedGoogle Scholar
  9. 9.
    Lund LR, Green KA, Stoop AA, Ploug M, Almholt K, Lilla J. Plasminogen activation independent of uPA and tPA maintains wound healing in gene deficient mice. EMBO J. 2006;25:2686–97.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bifulco K, Longanesi-Cattani I, Gala M, Di Carluccio G, Masucci MT, Pavone V. The soluble form of urokinase receptor promotes angiogenesis through its Ser88-Arg-Ser-Arg-Tyr92 chemotactic sequence. J Thromb Haemost. 2010;8:2789–99.CrossRefPubMedGoogle Scholar
  11. 11.
    Bifulco K, Longanesi-Cattani I, Gargiulo L, Maglio O, Cataldi M, De Rosa M, Stoppelli MP, Pavone V, Carriero MV. An urokinase receptor antagonist that inhibits cell migration by blocking the formyl peptide receptor. FEBS Lett. 2008;582:1141–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Perez HD, Holmes R, Kelly E, Mcclary J, Chou Q, Andrews WH. Cloning of the gene coding for a human receptor for formyl peptides—characterization of a promoter region and evidence for polymorphic expression. Biochemistry. 1992;31:11595–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Gwinn MR, Sharma A, De Nardin E. Single nucleotide polymorphisms of the N-formyl peptide receptor in localized juvenile periodontitis. J Periodontol. 1999;70:1194–201.CrossRefPubMedGoogle Scholar
  14. 14.
    Migeotte I, Communi D, Parmentier M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor. 2006;17:501–19.CrossRefGoogle Scholar
  15. 15.
    Sahagun-Ruiz A, Colla JS, Juhn J, Gao JL, Murphy PM, McDermott DH. Contrasting evolution of the human leukocyte N-formylpeptide receptor subtypes FPR and FPRL1R. Genes Immun. 2001;2:335–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Hannon R, Croxtall JD, Getting S, Roviezzo F, Yona S, Paul-Clark MJ, Gavins FN, Perretti M, Morris JF, Buckingham JC, Flower RJ. Aberrant inflammation and resistance to glucocorticoids in annexin 12/2 mouse. FASEB J. 2003;17:253–5.PubMedGoogle Scholar
  17. 17.
    Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, D’Acquisto F, Buckingham JC, Perretti M, Flower RJ. Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J Immunol. 2010;184:2611–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bifulco K, Longanesi-Cattani I, Franco P, Pavone V, Mugione P, Di Carluccio G, Masucci MT, Arra C, Pirozzi G, Stoppelli MP, Carriero MV. Single amino acid substitutions in the chemotactic sequence of urokinase receptor modulate cell migration and invasion. PLoS One. 2012;7:44806.CrossRefGoogle Scholar
  19. 19.
    Carriero MV, Longanesi-Cattani I, Bifulco K, Maglio O, Lista L, Barbieri A, Votta G, Masucci MT, Arra C, Franco R, De Rosa M, Stoppelli MP, Pavone V. Structure-based design of an urokinase-type plasminogen activator receptor-derived peptide inhibiting cell migration and lung metastasis. Mol Cancer Ther. 2009;8:2708–17.CrossRefPubMedGoogle Scholar
  20. 20.
    Bifulco K, Longanesi-Cattani I, Liguori E, Arra C, Rea D, Masucci MT. A urokinase receptor-derived peptide inhibiting VEGF-dependent directional migration and vascular sprouting. Mol Cancer Ther. 2013;10:1981–93.CrossRefGoogle Scholar
  21. 21.
    Dal Monte M, Rezzola S, Cammalleri M, Belleri M, Locri F, Morbidelli L, Corsini M, Paganini G, Semeraro F, Cancarini A, Rusciano D, Presta M, Bagnoli P. Antiangiogenic effectiveness of the urokinase receptor-derived peptide UPARANT in a model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2015;56:2392–407.CrossRefGoogle Scholar
  22. 22.
    Carriero MV, Bifulco K, Minopoli M, Lista L, Maglio O, Mele L, Di Carluccio G, De Rosa M, Pavone V. UPARANT: a urokinase receptor-derived peptide inhibitor of VEGF-driven angiogenesis with enhanced stability and in vitro and in vivo potency. Mol Cancer Ther. 2014;13:1092–104.CrossRefPubMedGoogle Scholar
  23. 23.
    Vinegar R, Schreiber W, Hugo R. Biphasic development of carrageenin edema in rats. J Pharmacol Exp Ther. 1969;166:96–103.PubMedGoogle Scholar
  24. 24.
    Garcia Leme J, Hamamura L, Leite MP, Rocha Silva M. Pharmacological analysis of the acute inflammatory process induced in the rat’s paw by local injection of carrageenin and by heating. Br J Pharmacol. 1973;48:88–96.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol. 2003;225:115–21 (review).PubMedGoogle Scholar
  26. 26.
    Palazzo E, Marabese I, Soukupova M, Luongo L, Boccella S, Giordano C, de Novellis V, Rossi F, Maione S. Metabotropic glutamate receptor subtype 8 in the amygdala modulates thermal threshold, neurotransmitter release, and rostral ventromedial medulla cell activity in inflammatory pain. J Neurosci. 2011;31:4687–97.CrossRefPubMedGoogle Scholar
  27. 27.
    Posadas I, Bucci M, Roviezzo F, Rossi A, Parente L, Sautebin L, Cirino G. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol. 2004;142:331–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Corea G, Fattorusso E, Lanzotti V, Di Meglio P, Maffia P, Grassia G, Ialenti A, Ianaro A. Discovery and biological evaluation of the novel naturally occurring diterpene pepluanone as anti-inflammatory agent. J Med Chem. 2005;4822:7055–62.CrossRefGoogle Scholar
  29. 29.
    Panza E, De Cicco P, Ercolano G, Armogida C, Scognamiglio G, Anniciello AM, Botti G, Cirino G, Ianaro A. Differential expression of cyclooxygenase-2 in metastatic melanoma affects progression free survival. Oncotarget. 2016;7(35):57077–85.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Butturini E, Di Paola R, Suzuki H, Paterniti I, Ahmad A, Mariotto S, Cuzzocrea S. Costunolide and Dehydrocostuslactone, two natural sesquiterpene lactones, ameliorate the inflammatory process associated to experimental pleurisy in mice. Eur J Pharmacol. 2014;5:107–15.CrossRefGoogle Scholar
  31. 31.
    Sostres C, Gargallo CJ, Lanas A. Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res Ther. 2013;15(Suppl 3):S3.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vasarhelyi B. Soluble urokinase plasminogen activator receptor, the candidate prophetic biomarker in severe inflammatory response syndrome. J Intern Med. 2014;276:645–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Halici Z, Dengiz GO, Odabasoglu F, Suleyman H, Cadirci E, Halici M. Amiodarone has anti-inflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced paw edema. Eur J Pharmacol. 2007;566:215–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Gilligan JP, Lovato SJ, Erion MD, Jeng AY. Modulation of carrageenan induced hind paw edema by substance P. Inflammation. 1994;18:285–92.CrossRefPubMedGoogle Scholar
  35. 35.
    Harada M, Habata Y, Hosoya M, Nishi K, Fujii R, Kobayashi M, Hinuma S. N-Formylated humanin activates both formyl peptide receptor-like 1 and 2. Biochem Biophys Res Commun. 2004;324:255–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Czapiga M, Gao JL, Kirk A, Lekstrom-Himes J. Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp Hematol. 2005;33:73–84.CrossRefPubMedGoogle Scholar
  37. 37.
    VanCompernolle SE, Clark KL, Rummel KA, Todd SC. Expression and function of formyl peptide receptors on human fibroblast cells. J Immunol. 2003;171:2050–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Perretti M, Croxtall JD, Wheller SK, Goulding NJ, Hannon R, Flower RJ. Mobilizing lipocortin 1 in adherent human leukocytes downregulates their transmigration. Nat Med. 1996;22:1259–62.CrossRefGoogle Scholar

Copyright information

© European Union 2017

Authors and Affiliations

  • Serena Boccella
    • 1
  • Elisabetta Panza
    • 2
  • Liliana Lista
    • 3
  • Carmela Belardo
    • 1
  • Angela Ianaro
    • 2
  • Mario De Rosa
    • 1
  • Vito de Novellis
    • 1
    Email author
  • Vincenzo Pavone
    • 3
    Email author
  1. 1.Department of Experimental MedicineUniversità degli Studi della CampaniaNaplesItaly
  2. 2.Department of PharmacyUniversity of Naples Federico IINaplesItaly
  3. 3.Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly

Personalised recommendations