Skip to main content
Log in

Probucol attenuates overt pain-like behavior and carrageenan-induced inflammatory hyperalgesia and leukocyte recruitment by inhibiting NF-кB activation and cytokine production without antioxidant effects

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

This study aimed to evaluate the effect of probucol in inflammatory hyperalgesia and leukocyte recruitment in mice.

Treatment

Probucol at 0.3–3 mg/kg was administrated per oral 1 h before inflammatory stimulus.Author: Kindly check and confirm the affiliation 1 have been correctly processed or not and amend if necessary.Thank you. We have corrected affiliation 1. We added the information to the appropriate boxes. However the state and the postal code are in a different order when compared to the other affiliations.

Methods

Overt pain-like behaviors were determined by the number of abdominal writhings induced by phenyl-p-benzoquinone and acetic acid. Mechanical and thermal hyperalgesia induced by carrageenan were determined using an electronic anesthesiometer and hot plate apparatus, respectively. Leukocyte recruitment was evaluated by direct count or by determination of myeloperoxidase and N-acetylglucosaminidase activities. Antioxidant ability was determined by measurement of GSH levels, ABTS and FRAP assays. Cytokine production and NF-кB activation were evaluated by ELISA. Data were analyzed by ANOVA followed by Tukey’s post-hoc. p < 0.05 was considered significant.

Results

Probucol reduced overt pain-like behavior, and carrageenan-induced mechanical and thermal hyperalgesia. These effects were accompanied by reduced leukocyte influx in both paw skin and peritoneum exudate. Probucol did not alter carrageenan-induced tissue antioxidant capacity at anti-inflammatory/analgesic dose. On the other hand, probucol inhibited carrageenan-induced IL-1β, TNF-α and CXCL1 production as well as NF-кB activation.

Conclusion

Probucol presents analgesic and anti-inflammatory activities by employing mechanisms other than its antioxidant properties. These mechanisms involve targeting of pro-inflammatory cytokines and NF-кB activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–35.

    Article  CAS  PubMed  Google Scholar 

  2. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, et al. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410:471–5.

    Article  CAS  PubMed  Google Scholar 

  3. Jin X, Gereau RW IV. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-a. J Neurosci. 2006;26:246–55.

    Article  CAS  PubMed  Google Scholar 

  4. Binshtok A, Wang H, Zimmermann K. Nociceptors are interleukin-1ßsensors. J Neurosci. 2008;28:14062–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Talbot S, Foster SL, Woolf CJ. Neuroimmune physiology and pathology. Annu Rev Immunol. 2016;34.

  6. Hudmon A, Choi JS, Tyrrell L, Black JA, Rush AM, Waxman SG, et al. Phosphorylation of sodium channel Na(v)1.8 by p38 mitogen-activated protein kinase increases current density in dorsal root ganglion neurons. J Neurosci. 2008;28:3190–201.

    Article  CAS  PubMed  Google Scholar 

  7. Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther. 2006;112:116–38.

    Article  CAS  PubMed  Google Scholar 

  8. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440:228–32.

    Article  CAS  PubMed  Google Scholar 

  9. Zarpelon AC, Rodrigues FC, Lopes AH, Souza GR, Carvalho TT, Pinto LG, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54–65.

    Article  CAS  PubMed  Google Scholar 

  10. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–45.

    Article  CAS  PubMed  Google Scholar 

  11. Anrather J, Racchumi G, Iadecola C. NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem. 2006;281:5657–67.

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh S, Hayden MS. New regulators of NF-kB in inflammation. Nat Rev Immunol. 2008;8:837–48.

    Article  CAS  PubMed  Google Scholar 

  13. Hattori H, Subramanian KK, Sakai J, Jia Y, Li Y, Porter TF, et al. Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. PNAS. 2010;107:3546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maioli NA, Zarpelon AC, Mizokami SS, Calixto-Campos C, Guazelli CFS, Hohmann MSN, et al. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2. Braz J Med Biol Res. 2015;48:321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Süleyman H, Demircan B, Karagöz Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol Rep. 2007;59:247–58.

    PubMed  Google Scholar 

  16. Manson SC, Brown RE, Cerulli A, Vidaurre CF. The cumulative burden of oral corticosteroid side effects and the economic implications of steroid use. Respir Med Elsevier Ltd. 2009;103:975–94.

    Article  Google Scholar 

  17. Mizokami SS, Arakawa NS, Ambrosio SR, Zarpelon AC, Casagrande R, Cunha TM, et al. Kaurenoic acid from Sphagneticola trilobata inhibits inflammatory pain: effect on cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. J Nat Prod. 2012;75:896–904.

    Article  CAS  PubMed  Google Scholar 

  18. Fattori V, Pinho-Ribeiro FA, Borghi SM, Alves-Filho JC, Cunha TM, Cunha FQ, et al. Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-kB activation. Inflamm Res. 2015;64:993–1003.

    Article  CAS  PubMed  Google Scholar 

  19. Manchope MF, Calixto-Campos C, Coelho-Silva L, Zarpelon AC, Pinho-Ribeiro FA, Georgetti SR, et al. Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO–cGMP–PKG–KATPChannel signaling pathway. PLoS One. 2016;11:1–20.

    Article  Google Scholar 

  20. Ruiz-Miyazawa KW, Zarpelon AC, Pinho-Ribeiro FA, Pavão-De-Souza GF, Casagrande R, Verri WA Jr. Vinpocetine reduces carrageenan-induced inflammatory hyperalgesia in mice by inhibiting oxidative stress, cytokine production and NF-κB activation in the paw and spinal cord. PLoS One. 2015;10:1–18.

    Article  Google Scholar 

  21. Ruiz-Miyazawa KW, Pinho-Ribeiro FA, Zarpelon AC, Staurengo-Ferrari L, Silva RL, Alves-Filho JC, et al. Vinpocetine reduces lipopolysaccharide-induced inflammatory pain and neutrophil recruitment in mice by targeting oxidative stress, cytokines and NF-κB. Chem Biol Interact Elsevier Irel Ltd. 2015;237:9–17.

    Article  CAS  Google Scholar 

  22. Navarro SA, Serafim KGG, Mizokami SS, Hohmann MSN, Casagrande R, Verri WA Jr. Analgesic activity of piracetam: effect on cytokine production and oxidative stress. Pharmacol Biochem Behav. 2013;105:183–92.

    Article  CAS  PubMed  Google Scholar 

  23. Bridges AB, Scott NA, Belch JJF. Probucol, a superoxide free radical scavenger in vitro. Atherosclerosis. 1991;89:263–5.

    Article  CAS  PubMed  Google Scholar 

  24. Siveski-Iliskovic N, Kaul N, Singal PK. Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation. 1994;89:2829–35.

    Article  CAS  PubMed  Google Scholar 

  25. Al-Majed AA. Probucol attenuates oxidative stress, energy starvation, and nitric acid production following transient forebrain ischemia in the rat hippocampus. Oxid Med Cell Longev. 2011;2011:1–8.

    Article  Google Scholar 

  26. Colle D, Santos DB, Moreira ELG, Hartwig JM, dos Santos AA, Zimmermann LT, et al. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS One. 2013;8:1–15.

    Article  Google Scholar 

  27. Zhang X, Li Z, Liu D, Xu X, Shen W, Mei Z. Effects of probucol on hepatic tumor necrosis factor-alpha, interleukin-6 and adiponectin receptor-2 expression in diabetic rats. J Gastroenterol Hepatol. 2009;24:1058–63.

    Article  CAS  PubMed  Google Scholar 

  28. Ku G, Doherty NS, Schmidt LF, Jackson R, Dinerstein RJ. Ex vivo lipopolysaccharide-induced interleukin-1 secretion inhibited agent from murine peritoneal macrophages by probucol, a hypocholesterolemic agent with antioxidant properties. FASEB J. 1990;4:1645–53.

    CAS  PubMed  Google Scholar 

  29. Ferns GAA, Forster L, Stewart-Lee A, Nourooz-Zadeh J, Anggard EE. Probucol inhibits mononuclear cell adhesion to vascular endothelium in the cholesterol-fed rabbit. Atherosclerosis. 1993;100:171–81.

    Article  CAS  PubMed  Google Scholar 

  30. Meng CQ, Somers PK, Hoong LK, Zheng XS, Ye Z, Worsencroft KJ, et al. Discovery of novel phenolic antioxidants as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases. J Med Chem. 2004;47:6420–32.

    Article  CAS  PubMed  Google Scholar 

  31. Kaneko M, Hayashi J, Saito I, Miyasaka N. Probucol downregulates E-selectin expression on cultured human vascular endothelial cells. Arterioscler Thromb Vasc Biol. 1996;16:1047–51.

    Article  CAS  PubMed  Google Scholar 

  32. Zapolska-Downar D, Zapolski-Downar A, Markiewski M, Ciechanowicz A, Kaczmarczyk M, Naruszewicz M. Selective inhibition by alpha-tocopherol of vascular cell adhesion molecule-1 expression in human vascular endothelial cells. Biochem Biophys Res Commun. 2000;155:609–15.

    Article  Google Scholar 

  33. Zanardo RC, Cruz JWM., Martinez LL, de Oliveira MA, Fortes ZB. Probucol restores the defective leukocyte–endothelial interaction in experimental diabetes. Eur J Pharmacol. 2003;478:211–9.

    Article  CAS  PubMed  Google Scholar 

  34. Fu H, Li G, Liu C, Li J, Wang X, Cheng L, et al. Probucol prevents atrial remodeling by inhibiting oxidative stress and TNFa/NF-kB/TGF-b signal transduction pathway in alloxan-induced diabetic rabbits. J Cardiovasc Electrophysiol. 2015;26:211–22.

    Article  PubMed  Google Scholar 

  35. Park SY, Lee JH, Kim CD, Rhim BY, Hong KW, Lee WS. Beneficial synergistic effects of concurrent treatment with cilostazol and probucol against focal cerebral ischemic injury in rats. Brain Res. 2007;1157:112–20.

    Article  CAS  PubMed  Google Scholar 

  36. Niimi M, Keyamura Y, Nozako M, Koyama T, Kohashi M, Yasufuku R, et al. Probucol inhibits the initiation of atherosclerosis in cholesterol-fed rabbits. Lipids Health Dis. 2013;12:1–8.

    Article  Google Scholar 

  37. Li S, Liang J, Niimi M, Bilal Waqar A, Kang D, Koike T, et al. Probucol suppresses macrophage infiltration and MMP expression in atherosclerotic plaques of WHHL rabbits. J Atheroscler Thromb. 2014;21:648–58.

    Article  CAS  PubMed  Google Scholar 

  38. Li T, Chen W, An F, Tian H, Zhang J, Peng J, et al. Probucol attenuates inflammation and increases stability of vulnerable atherosclerotic plaques in rabbits. Tohoku J Exp Med. 2011;225:23–34.

    Article  CAS  PubMed  Google Scholar 

  39. Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, et al. Naringenin reduces inflammatory pain in mice. Neuropharmacology Elsevier Ltd. 2016;105:508–19.

    Article  CAS  Google Scholar 

  40. Mizokami SS, Hohmann MSN, Staurengo-Ferrari L, Carvalho TT, Zarpelon AC, Possebon MI, et al. Pimaradienoic acid inhibits carrageenan-induced inflammatory leukocyte recruitment and edema in mice: inhibition of oxidative stress, nitric oxide and cytokine production. PLoS One. 2016;11:1–17.

  41. Verri WA Jr, Cunha TM, Magro DA, Domingues AC, Vieira SM, Souza GR, et al. Role of IL-18 in overt pain-like behaviour in mice. Eur J Pharmacol. 2008;588:207–12.

    Article  CAS  PubMed  Google Scholar 

  42. Cunha TM, Verri WA Jr, Vivancos GG, Moreira IF, Reis S, Parada CA, et al. An electronic pressure-meter nociception paw test for rats. Braz J Med Biol Res. 2004;37:401–7.

    Article  CAS  PubMed  Google Scholar 

  43. Bradley P, Christensen D. Cellular and extracellular myeloperoxidade in pyogenic inflammation. Blood. 2016;60:618–23.

    Google Scholar 

  44. Barcelos LS, Talvani A, Teixira AS, Vieira LQ, Cassali GD, Andrade SP, et al. Impaired inflammatory angiogenesis, but not leukocyte influx, in mice lacking TNFR1. J Leukoc Biol. 2005;78:352–8.

    Article  CAS  PubMed  Google Scholar 

  45. Cunha TM, Verri WA Jr, Silva JS, Poole S, Cunha FQ, Ferreira SH. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci USA. 2005;102:1755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cunha TM, Verri WA Jr, Schivo IR, Napimoga MH, Parada C a, Poole S, et al. Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol. 2008;83:824–32.

    Article  CAS  PubMed  Google Scholar 

  47. Kim MJ, Lee SY, Yang KY, Nam SH, Kim HJ, Kim YJ, et al. Differential regulation of peripheral IL-1β-induced mechanical allodynia and thermal hyperalgesia in rats. Pain Int Assoc Study Pain. 2014;155:723–32.

    CAS  Google Scholar 

  48. Calabrese E. The emergence of the dose–response concept in biology and medicine. Int J Mol Sci. 2016;17:2034.

    Article  PubMed Central  Google Scholar 

  49. Lutfy K, Cowan A. Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol. 2004;2:395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Santos ARS, Vedana EMA, De Freitas GAG. Antinociceptive effect of meloxicam, in neurogenic and inflammatory nociceptive models in mice. Inflamm Res. 1998;47:302–7.

    Article  CAS  PubMed  Google Scholar 

  51. Pinho-Ribeiro FA, Zarpelon AC, Mizokami SS, Borghi SM, Bordignon J, Silva RL, et al. The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. J Nutr Biochem. 2016;33:8–14. doi:10.1016/j.jnutbio.2016.03.013. ([Internet] Elsevier B.V.).

    Article  CAS  PubMed  Google Scholar 

  52. Zarpelon AC, Cunha TM, Alves-Filho JC, Pinto LG, Ferreira SH, McInnes IB, et al. IL-33/ST2 signalling contributes to carrageenin-induced innate inflammation and inflammatory pain: role of cytokines, endothelin-1 and prostaglandin E 2. Br J Pharmacol. 2013;169:90–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Akeson AL, Woods CW, Mosher LB, Thomas CE, Jackson RL. Inhibition of IL-1b expression in THP-1 cells by probucol and tocopherol. Atherosclerosis. 1991;86:261–70.

    Article  CAS  PubMed  Google Scholar 

  54. Ku G, Doherty NS, Wolos JA, Schmidt LF, Hendricks D, Jackson RL. Inhibition by probucol of interleukin 1 secretion and its implication in atherosclerosis. Am J Cardiol. 1988;62:77B–81B.

    Article  CAS  PubMed  Google Scholar 

  55. Liu G-X, Ou D-M, Liu J-H, Huang H-L, Liao D-F. Probucol inhibits lipid peroxidation of macrophage and affects its secretory properties. Act Pharmacol Sin. 2000;21:637–40.

    CAS  Google Scholar 

  56. Oliveira SHP, Canetti C, Ribeiro RA, Cunha FQ. Neutrophil migration induced by IL-1b depends upon LTB4 released by macrophages and upon TNF-a and IL-1b released by mast cells. Inflammation. 2008;31:36–46.

    Article  CAS  PubMed  Google Scholar 

  57. Wyble CW, Hynes KL, Kuchibhotla J, Marcus BC, Hallahan D, Gewertz BL. TNF-alpha and IL-1 upregulate membrane-bound and soluble E-selectin through a common pathway. J Surg Res. 1997;73:107–12.

    Article  CAS  PubMed  Google Scholar 

  58. Kawabata A. Prostaglandin E2 and pain—an update. Biol Pharm Bull. 2011;34:1170–3.

    Article  CAS  PubMed  Google Scholar 

  59. Ozaki M, Yamada Y, Matoba K, Otani H, Mune M, Yukawa S, et al. Phospholipase A 2 activity in ox-LDL-stimulated mesangial cells and modulation by a -tocopherol. Kidney Int. 1999;56:171–3.

    Article  Google Scholar 

  60. Tanaka K, Hayashi K, Shingu T, Kuga Y, Nomura K, Kajiyama G. Probucol inhibits neointimal formation in carotid arteries of normocholesterolemic rabbits and the proliferation of cultured rabbit vascular smooth muscle cells. Cardiovasc Drugs Ther. 1998;12:19–28.

    Article  CAS  PubMed  Google Scholar 

  61. Ranganathan PV, Jayakumar C, Mohamed R, Dong Z, Ramesh G. Netrin-1 regulates the inflammatory response of neutrophils and macrophages, and suppresses ischemic acute kidney injury by inhibiting COX-2 mediated PGE2 productioness. Kidney Int. 2013;83:1087–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dieterich LC, Huang H, Massena S, Golenhofen N, Phillipson M, Dimberg A. ab-crystallin/HspB5 regulates endothelial-leukocyte interactions by enhancing NF-bB-induced up-regulation of adhesion molecules ICAM-1, VCAM-1 and E-selectin. Angiogenesis. 2013;16:975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chang WC, Chen CH, Lee MF, Chang T, Yu YM. Chlorogenic acid attenuates adhesion molecules upregulation in IL-1b-treated endothelial cells. Eur J Nutr. 2010;49:267–75.

    Article  CAS  PubMed  Google Scholar 

  64. Chen J-W, Chen Y-H, Lin F-Y, Chen Y-L, Lin S-J. Ginkgo biloba extract inhibits tumor necrosis factor-α-induced reactive oxygen species generation, transcription factor activation, and cell adhesion molecule expression in human aortic endothelial cells. Arter Thromb Vasc Biol. 2003;23:1559–66.

    Article  CAS  Google Scholar 

  65. Zhang M, Wang J, Liu JH, Chen SJ, Zhen B, Wang CH, et al. Effects of probucol on angiotensin II-induced BMP-2 expression in human umbilical vein endothelial cells. Mol Med Rep. 2013;7:177–82.

    CAS  PubMed  Google Scholar 

  66. Aoki M, Nata T, Morishita R, Matsushita H, Nakagami H, Yamamoto K, et al. Endothelial apoptosis induced by oxidative stress through activation of NF-κB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension. 2001;38:48–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the methodological support of Sandra S. Mizokami, the technical support of Giuliana Bertozi Francisco and the financial support of Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq), Coordenação do Aperfeiçoamento de Pessoal de Nível Superior (CAPES), São Paulo Research Foundation under Grant agreements No. 2011/19670-0 (Thematic project) and 2013/08216-2 (Center for Research in Inflammatory Disease), Ministério da Ciência, Tecnologia e Inovação (MCTI), Secretaria da Ciência, Tecnologia e Inovação (SETI), Fundação Araucária and Parana State Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldiceu A. Verri Jr..

Additional information

Responsible Editor: Mauro Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zucoloto, A.Z., Manchope, M.F., Staurengo-Ferrari, L. et al. Probucol attenuates overt pain-like behavior and carrageenan-induced inflammatory hyperalgesia and leukocyte recruitment by inhibiting NF-кB activation and cytokine production without antioxidant effects. Inflamm. Res. 66, 591–602 (2017). https://doi.org/10.1007/s00011-017-1040-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1040-8

Keywords

Navigation