The α-cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells through Akt and p38 inhibition

Abstract

In the last decades, a growing need to discover new compounds for the prevention and treatment of inflammatory diseases has led researchers to consider drugs derived from natural products as a valid option in the treatment of inflammation-associated disorders. The purpose of the present study was to investigate the anti-inflammatory effects of a new formulation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate as a complex with alpha-cyclodextrin (moringin + α-CD) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, a common model used for inflammation studies. In buffered/aqueous solution, the moringin + α-CD complex has enhanced the water solubility and stability of this isothiocyanate by forming a stable inclusion system. Our results showed that moringin + α-CD inhibits the production of inflammatory mediators in LPS-stimulated macrophages by down-regulation of pro-inflammatory cytokines (TNF-α and IL-1β), by preventing IκB-α phosphorylation, translocation of the nuclear factor-κB (NF-κB), and also via the suppression of Akt and p38 phosphorylation. In addition, as a consequence of upstream inhibition of the inflammatory pathway following treatment with moringin + α-CD, the modulation of the oxidative stress (results focused on the expression of iNOS and nitrotyrosine) and apoptotic pathway (Bax and Bcl-2) was demonstrated. Therefore, moringin + α-CD appears to be a new relevant helpful tool to use in clinical practice for inflammation-associated disorders.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol. 2008;8(6):478–86.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Macarthur M, Hold GL, El-Omar EM. Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol. 2004;286(4):G515–G20.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Franks AL, Slansky JE. Multiple associations between a broad spectrum of autoimmune diseases, chronic inflammatory diseases and cancer. Anticancer Res. 2012;32(4):1119–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev. 2009;29(5):767–820.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Qandil AM. Prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs), more than meets the eye: a critical review. Int J Mol Sci. 2012;13(12):17244–74.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bellik Y, Boukraa L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules. 2012;18(1):322–53.

    Article  PubMed  Google Scholar 

  7. 7.

    Anwar F, Latif S, Ashraf M, Gilani AH. Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res. 2007;21(1):17–25.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Biswas SK, Chowdhury A, Das J, Roy A, Zahid Hosen SM. Pharmacological potentials of Moringa oleifera Lam.: a review. Int J Pharm Sci Res. 2012;47:305–10.

    Google Scholar 

  9. 9.

    Giacoppo S, Galuppo M, Montaut S, Iori R, Rollin P, Bramanti P, et al. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia. 2015;106:12–21.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Fuentes F, Paredes-Gonzalez X, Kong AT. Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep. 2015;1(3):179–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Muller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, et al. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry. 2015;118:139–48.

    Article  PubMed  Google Scholar 

  12. 12.

    Galuppo M, Giacoppo S, De Nicola GR, Iori R, Navarra M, Lombardo GE, et al. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia. 2014;95:160–74.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Giacoppo S, Galuppo M, De Nicola GR, Iori R, Bramanti P, Mazzon E. 4(alpha-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury. Bioorg Med Chem. 2015;23(1):80–8.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Giacoppo S, Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, et al. The isothiocyanate isolated from moringa oleifera shows potent anti-inflammatory activity in the treatment of murine subacute parkinson’s disease. Rejuvenation Res. 2016 (in press).

  15. 15.

    Brunelli D, Tavecchio M, Falcioni C, Frapolli R, Erba E, Iori R, et al. The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol. 2010;79(8):1141–8.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    L-IVaR JT. Stability studies of isothiocyanates and nitriles in aqueous media. Songklanakarin J Sci Technol. 2015;37(6):1–6.

    Google Scholar 

  17. 17.

    Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023–35.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    P. RCPBR. Complexes for immobilizin, g isothiocyanate natural precursors in cyclodextrins, preparation and use. United States Patent; Patent No: US 6,716,827 B1. 2004.

  19. 19.

    Roselli C, Perly B, Cassel S, Rollin P, Iori R, Manici, L. Palmieri Proc. 9th International Cyclodextrin Symposium, Santiago de Compostela. 31/05–03/06/1998 533–6.

  20. 20.

    Rajan TS, Giacoppo S, Iori R, De Nicola GR, Grassi G, Pollastro F, et al. Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages. Fitoterapia. 2016;112:104–15.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Chai J, Luo L, Hou F, Fan X, Yu J, Ma W, et al. Agmatine reduces lipopolysaccharide-mediated oxidant response via activating PI3K/Akt pathway and up-regulating Nrf2 and HO-1 expression in macrophages. PLoS One. 2016;11(9):e0163634.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Yang G, Lee K, Lee M, Ham I, Choi HY. Inhibition of lipopolysaccharide-induced nitric oxide and prostaglandin E2 production by chloroform fraction of Cudrania tricuspidata in RAW 264.7 macrophages. BMC Complement Altern Med. 2012;10:12:250.

    Google Scholar 

  23. 23.

    Makarov SS. NF-kappaB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today. 2000;6(11):441–8.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Han ED, Riches DW. IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am J Physiol Cell Physiol. 2001;280(3):C441–C50.

    Google Scholar 

  25. 25.

    Kim SH, Johnson VJ, Shin T-Y, Sharma RP. Selenium attenuates lipopolysaccharide-induced oxidative stress responses through modulation of p38 MAPK and NF-kappaB signaling pathways. Exp Biol Med (Maywood). 2004;229(2):203–13.

    CAS  Article  Google Scholar 

  26. 26.

    Yang YI, Shin HC, Kim SH, Park WY, Lee KT, Choi JH. 6,6′-Bieckol, isolated from marine alga Ecklonia cava, suppressed LPS-induced nitric oxide and PGE(2) production and inflammatory cytokine expression in macrophages: the inhibition of NFkappaB. Int Immunopharmacol. 2012;12(3):510–7.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Choi YH, Kim GY, Lee HH. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-kappaB signaling pathways. Drug Des Devel Ther. 2014;8:1941–53.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Dong ZB, Zhang YH, Zhao BJ, Li C, Tian G, Niu B, et al. Screening for anti-inflammatory components from Corydalis bungeana Turcz. based on macrophage binding combined with HPLC. BMC Complement Altern Med. 2015 Oct 15;15:363.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Chang CF, Chau YP, Kung HN, Lu KS. The lipopolysaccharide-induced pro-inflammatory response in RAW264.7 cells is attenuated by an unsaturated fatty acid-bovine serum albumin complex and enhanced by a saturated fatty acid-bovine serum albumin complex. Inflamm Res. 2012;61(2):151–60.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Bertolini A, Ottani A, Sandrini M. Dual acting anti-inflammatory drugs: a reappraisal. Pharmacol Res. 2001;44(6):437–50.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Lind L. Circulating markers of inflammation and atherosclerosis. Atherosclerosis. 2003;169(2):203–14.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Yang J, Zhang L, Yu C, Yang X-F, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Palsson-McDermott EM, O’Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004;113(2):153–62.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    McGuire VA, Gray A, Monk CE, Santos SG, Lee K, Aubareda A, et al. Cross talk between the Akt and p38alpha pathways in macrophages downstream of Toll-like receptor signaling. Mol Cell Biol. 2013;33(21):4152–65.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lee YG, Lee J, Byeon SE, Yoo DS, Kim MH, Lee SY, et al. Functional role of Akt in macrophage-mediated innate immunity. Front Biosci (Landmark Ed) 2011;16:517–30.

    CAS  Article  Google Scholar 

  37. 37.

    Rajaram MVS, Ganesan LP, Parsa KVL, Butchar JP, Gunn JS, Tridandapani S. Akt/Protein kinase B modulates macrophage inflammatory response to Francisella infection and confers a survival advantage in mice. J Immunol. 2006;177(9):6317–24.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science. 1997;277(5325):567–70.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D, et al. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene. 1998;17(3):313–25.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Toker A, Cantley LC. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature. 1997;387(6634):673–6.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND. Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol. 2007;8:1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sweet MJ, Hume DA. Endotoxin signal transduction in macrophages. J Leukoc Biol. 1996;60(1):8–26.

    CAS  PubMed  Google Scholar 

  44. 44.

    Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999;401(6748):82–5.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107(1):7–11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-kappaB signaling pathways. Nature Immun. 2011;12(8):695–708.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Albina JE, Cui S, Mateo RB, Reichner JS. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol. 1993;150(11):5080–5.

    CAS  PubMed  Google Scholar 

  48. 48.

    Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA. 2002;99(18):11908–13.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ernst IMA, Palani K, Esatbeyoglu T, Schwarz K, Rimbach G. Synthesis and Nrf2-inducing activity of the isothiocyanates iberverin, iberin and cheirolin. Pharmacol Res. 2013;70(1):155–62.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev. 2012;32(4):687–726.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Karabay AZ, Aktan F, Sunguroglu A, Buyukbingol Z. Methylsulfonylmethane modulates apoptosis of LPS/IFN-gamma-activated RAW 264.7 macrophage-like cells by targeting p53, Bax, Bcl-2, cytochrome c and PARP proteins. Immunopharmacol Immunotoxicol. 2014;36(6):379–89.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the current research funds 2016 of IRCCS “Centro Neurolesi Bonino-Pulejo”, Messina, Italy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emanuela Mazzon.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

S. Giacoppo and T. S. Rajan have contributed equally.

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giacoppo, S., Rajan, T.S., Iori, R. et al. The α-cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells through Akt and p38 inhibition. Inflamm. Res. 66, 487–503 (2017). https://doi.org/10.1007/s00011-017-1033-7

Download citation

Keywords

  • RAW 264.7 macrophage cells
  • Moringa isothiocyanate
  • α-CD-complexed moringin
  • Inflammation
  • Akt
  • P38