Advertisement

Inflammation Research

, Volume 66, Issue 6, pp 487–503 | Cite as

The α-cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells through Akt and p38 inhibition

  • Sabrina Giacoppo
  • Thangavelu Soundara Rajan
  • Renato Iori
  • Patrick Rollin
  • Placido Bramanti
  • Emanuela MazzonEmail author
Original Research Paper

Abstract

In the last decades, a growing need to discover new compounds for the prevention and treatment of inflammatory diseases has led researchers to consider drugs derived from natural products as a valid option in the treatment of inflammation-associated disorders. The purpose of the present study was to investigate the anti-inflammatory effects of a new formulation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate as a complex with alpha-cyclodextrin (moringin + α-CD) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, a common model used for inflammation studies. In buffered/aqueous solution, the moringin + α-CD complex has enhanced the water solubility and stability of this isothiocyanate by forming a stable inclusion system. Our results showed that moringin + α-CD inhibits the production of inflammatory mediators in LPS-stimulated macrophages by down-regulation of pro-inflammatory cytokines (TNF-α and IL-1β), by preventing IκB-α phosphorylation, translocation of the nuclear factor-κB (NF-κB), and also via the suppression of Akt and p38 phosphorylation. In addition, as a consequence of upstream inhibition of the inflammatory pathway following treatment with moringin + α-CD, the modulation of the oxidative stress (results focused on the expression of iNOS and nitrotyrosine) and apoptotic pathway (Bax and Bcl-2) was demonstrated. Therefore, moringin + α-CD appears to be a new relevant helpful tool to use in clinical practice for inflammation-associated disorders.

Keywords

RAW 264.7 macrophage cells Moringa isothiocyanate α-CD-complexed moringin Inflammation Akt P38 

Notes

Acknowledgements

This study was supported by the current research funds 2016 of IRCCS “Centro Neurolesi Bonino-Pulejo”, Messina, Italy.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol. 2008;8(6):478–86.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Macarthur M, Hold GL, El-Omar EM. Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol. 2004;286(4):G515–G20.CrossRefPubMedGoogle Scholar
  3. 3.
    Franks AL, Slansky JE. Multiple associations between a broad spectrum of autoimmune diseases, chronic inflammatory diseases and cancer. Anticancer Res. 2012;32(4):1119–36.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev. 2009;29(5):767–820.CrossRefPubMedGoogle Scholar
  5. 5.
    Qandil AM. Prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs), more than meets the eye: a critical review. Int J Mol Sci. 2012;13(12):17244–74.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bellik Y, Boukraa L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules. 2012;18(1):322–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Anwar F, Latif S, Ashraf M, Gilani AH. Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res. 2007;21(1):17–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Biswas SK, Chowdhury A, Das J, Roy A, Zahid Hosen SM. Pharmacological potentials of Moringa oleifera Lam.: a review. Int J Pharm Sci Res. 2012;47:305–10.Google Scholar
  9. 9.
    Giacoppo S, Galuppo M, Montaut S, Iori R, Rollin P, Bramanti P, et al. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia. 2015;106:12–21.CrossRefPubMedGoogle Scholar
  10. 10.
    Fuentes F, Paredes-Gonzalez X, Kong AT. Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep. 2015;1(3):179–96.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Muller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, et al. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry. 2015;118:139–48.CrossRefPubMedGoogle Scholar
  12. 12.
    Galuppo M, Giacoppo S, De Nicola GR, Iori R, Navarra M, Lombardo GE, et al. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia. 2014;95:160–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Giacoppo S, Galuppo M, De Nicola GR, Iori R, Bramanti P, Mazzon E. 4(alpha-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury. Bioorg Med Chem. 2015;23(1):80–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Giacoppo S, Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, et al. The isothiocyanate isolated from moringa oleifera shows potent anti-inflammatory activity in the treatment of murine subacute parkinson’s disease. Rejuvenation Res. 2016 (in press).Google Scholar
  15. 15.
    Brunelli D, Tavecchio M, Falcioni C, Frapolli R, Erba E, Iori R, et al. The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol. 2010;79(8):1141–8.CrossRefPubMedGoogle Scholar
  16. 16.
    L-IVaR JT. Stability studies of isothiocyanates and nitriles in aqueous media. Songklanakarin J Sci Technol. 2015;37(6):1–6.Google Scholar
  17. 17.
    Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023–35.CrossRefPubMedGoogle Scholar
  18. 18.
    P. RCPBR. Complexes for immobilizin, g isothiocyanate natural precursors in cyclodextrins, preparation and use. United States Patent; Patent No: US 6,716,827 B1. 2004.Google Scholar
  19. 19.
    Roselli C, Perly B, Cassel S, Rollin P, Iori R, Manici, L. Palmieri Proc. 9th International Cyclodextrin Symposium, Santiago de Compostela. 31/05–03/06/1998 533–6.Google Scholar
  20. 20.
    Rajan TS, Giacoppo S, Iori R, De Nicola GR, Grassi G, Pollastro F, et al. Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages. Fitoterapia. 2016;112:104–15.CrossRefPubMedGoogle Scholar
  21. 21.
    Chai J, Luo L, Hou F, Fan X, Yu J, Ma W, et al. Agmatine reduces lipopolysaccharide-mediated oxidant response via activating PI3K/Akt pathway and up-regulating Nrf2 and HO-1 expression in macrophages. PLoS One. 2016;11(9):e0163634.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang G, Lee K, Lee M, Ham I, Choi HY. Inhibition of lipopolysaccharide-induced nitric oxide and prostaglandin E2 production by chloroform fraction of Cudrania tricuspidata in RAW 264.7 macrophages. BMC Complement Altern Med. 2012;10:12:250.Google Scholar
  23. 23.
    Makarov SS. NF-kappaB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today. 2000;6(11):441–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Han ED, Riches DW. IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am J Physiol Cell Physiol. 2001;280(3):C441–C50.Google Scholar
  25. 25.
    Kim SH, Johnson VJ, Shin T-Y, Sharma RP. Selenium attenuates lipopolysaccharide-induced oxidative stress responses through modulation of p38 MAPK and NF-kappaB signaling pathways. Exp Biol Med (Maywood). 2004;229(2):203–13.CrossRefGoogle Scholar
  26. 26.
    Yang YI, Shin HC, Kim SH, Park WY, Lee KT, Choi JH. 6,6′-Bieckol, isolated from marine alga Ecklonia cava, suppressed LPS-induced nitric oxide and PGE(2) production and inflammatory cytokine expression in macrophages: the inhibition of NFkappaB. Int Immunopharmacol. 2012;12(3):510–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Choi YH, Kim GY, Lee HH. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-kappaB signaling pathways. Drug Des Devel Ther. 2014;8:1941–53.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dong ZB, Zhang YH, Zhao BJ, Li C, Tian G, Niu B, et al. Screening for anti-inflammatory components from Corydalis bungeana Turcz. based on macrophage binding combined with HPLC. BMC Complement Altern Med. 2015 Oct 15;15:363.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chang CF, Chau YP, Kung HN, Lu KS. The lipopolysaccharide-induced pro-inflammatory response in RAW264.7 cells is attenuated by an unsaturated fatty acid-bovine serum albumin complex and enhanced by a saturated fatty acid-bovine serum albumin complex. Inflamm Res. 2012;61(2):151–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Bertolini A, Ottani A, Sandrini M. Dual acting anti-inflammatory drugs: a reappraisal. Pharmacol Res. 2001;44(6):437–50.CrossRefPubMedGoogle Scholar
  31. 31.
    Lind L. Circulating markers of inflammation and atherosclerosis. Atherosclerosis. 2003;169(2):203–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yang J, Zhang L, Yu C, Yang X-F, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Palsson-McDermott EM, O’Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004;113(2):153–62.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    McGuire VA, Gray A, Monk CE, Santos SG, Lee K, Aubareda A, et al. Cross talk between the Akt and p38alpha pathways in macrophages downstream of Toll-like receptor signaling. Mol Cell Biol. 2013;33(21):4152–65.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lee YG, Lee J, Byeon SE, Yoo DS, Kim MH, Lee SY, et al. Functional role of Akt in macrophage-mediated innate immunity. Front Biosci (Landmark Ed) 2011;16:517–30.CrossRefGoogle Scholar
  37. 37.
    Rajaram MVS, Ganesan LP, Parsa KVL, Butchar JP, Gunn JS, Tridandapani S. Akt/Protein kinase B modulates macrophage inflammatory response to Francisella infection and confers a survival advantage in mice. J Immunol. 2006;177(9):6317–24.CrossRefPubMedGoogle Scholar
  38. 38.
    Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science. 1997;277(5325):567–70.CrossRefPubMedGoogle Scholar
  39. 39.
    Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D, et al. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene. 1998;17(3):313–25.CrossRefPubMedGoogle Scholar
  40. 40.
    Toker A, Cantley LC. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature. 1997;387(6634):673–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND. Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol. 2007;8:1.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sweet MJ, Hume DA. Endotoxin signal transduction in macrophages. J Leukoc Biol. 1996;60(1):8–26.PubMedGoogle Scholar
  44. 44.
    Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999;401(6748):82–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107(1):7–11.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-kappaB signaling pathways. Nature Immun. 2011;12(8):695–708.CrossRefPubMedGoogle Scholar
  47. 47.
    Albina JE, Cui S, Mateo RB, Reichner JS. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol. 1993;150(11):5080–5.PubMedGoogle Scholar
  48. 48.
    Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA. 2002;99(18):11908–13.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ernst IMA, Palani K, Esatbeyoglu T, Schwarz K, Rimbach G. Synthesis and Nrf2-inducing activity of the isothiocyanates iberverin, iberin and cheirolin. Pharmacol Res. 2013;70(1):155–62.CrossRefPubMedGoogle Scholar
  50. 50.
    Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev. 2012;32(4):687–726.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Karabay AZ, Aktan F, Sunguroglu A, Buyukbingol Z. Methylsulfonylmethane modulates apoptosis of LPS/IFN-gamma-activated RAW 264.7 macrophage-like cells by targeting p53, Bax, Bcl-2, cytochrome c and PARP proteins. Immunopharmacol Immunotoxicol. 2014;36(6):379–89.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Sabrina Giacoppo
    • 1
  • Thangavelu Soundara Rajan
    • 1
  • Renato Iori
    • 2
  • Patrick Rollin
    • 3
  • Placido Bramanti
    • 1
  • Emanuela Mazzon
    • 1
    Email author
  1. 1.IRCCS Centro Neurolesi “Bonino-Pulejo”MessinaItaly
  2. 2.Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA)BolognaItaly
  3. 3.Université d’Orléans et CNRS, ICOA, UMR 7311OrléansFrance

Personalised recommendations