Inflammation Research

, Volume 66, Issue 6, pp 477–486 | Cite as

HCV-induced regulatory alterations of IL-1β, IL-6, TNF-α, and IFN-ϒ operative, leading liver en-route to non-alcoholic steatohepatitis

  • Rabia Nawaz
  • Sadia Zahid
  • Muhammad Idrees
  • Shazia Rafique
  • Muhammad Shahid
  • Ammara Ahad
  • Iram Amin
  • Iqra Almas
  • Samia Afzal
Review
  • 330 Downloads

Abstract

Over the course of time, Hepatitis C has become a universal health menace. Its deleterious effects on human liver encompass a lot of physiological, genetic as well as epigenetic alterations. Fatty liver (Hepatic steatosis) is an inflammation having multifactorial ancestries; one of them is HCV (steatohepatitis). HCV boosts several cellular pathways involving up-regulation of a number of cytokines. Current study reviews the regulation of some selective key cytokines during HCV infection, to help generate an improved understanding of their role. These cytokines, IL-1β, IL-6, TNF-α, and IFN-ϒ, are inflammatory markers of the body. These particular markers along with others help hepatocytes against viral infestation. However, recently, their association has been found in degradation of liver on the trail heading to non-alcoholic steatohepatitis (NASH). Consequently, the disturbance in their equilibrium has been repeatedly reported during HCV infection. Quite a number of findings are affirming their up-regulation. Although these cell markers are stimulated by hepatocytes as their standard protection mechanism, but modern studies have testified the paradoxical nature of this defense line. Nevertheless, direct molecular or epigenetic research is needed to question the actual molecular progressions and directions commanding liver to steatosis, cirrhosis, or eventually HCC (Hepatocellular Carcinoma).

Keywords

Hepatitis C virus (HCV) Non-alcoholic steatohepatitis (NASH) Interleukins (IL) Interferon (IFN) Tumor necrosis factor (TNF) 

Notes

Author contributions

The work is a product of the intellectual environment of the whole team. Both RN and SZ have contributed equally to the exploration of data, its compilation, acquisition, and writing of the manuscript. AA has helped in data compilation and manuscript writing. MS and IA have helped in acquisition of the data of the manuscript. MI, SR, and SA have critically gone through the whole work.

Compliance with ethical standards

Funding

No funding was obtained for this study.

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Durier N, Nguyen C, White LJ. Treatment of hepatitis C as prevention: a modeling case study in Vietnam. PLoS One. 2012;7(4):e34548.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Robertson B, Myers G, Howard C, et al. Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. Arch Virol. 1998;143(12):2493–503.PubMedCrossRefGoogle Scholar
  3. 3.
    Timpe J, McKeating J. Hepatitis C virus entry: possible targets for therapy. Gut. 2008;57(12):1728–37.PubMedCrossRefGoogle Scholar
  4. 4.
    Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346(16):1221–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Patel JH, Cobbold JFL, Thomas HC, Taylor-Robinson SD. Hepatitis C and hepatic steatosis. QJM. 2010;103(5):293–303.PubMedCrossRefGoogle Scholar
  6. 6.
    van der Poorten D, George J. Current and novel therapies for the treatment of nonalcoholic steatohepatitis. Hepatol Int. 2007;1(3):343–54.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hwang SJ, Luo JC, Chu CW, et al. Hepatic steatosis in chronic hepatitis C virus infection: prevalence and clinical correlation. J Gastroenterol Hepatol. 2001;16(2):190–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Thomopoulos KC, Arvaniti V, Tsamantas AC, et al. Prevalence of liver steatosis in patients with chronic hepatitis B: a study of associated factors and of relationship with fibrosis. Eur J Gastroenterol Hepatol. 2006;18(3):233–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415–28.PubMedCrossRefGoogle Scholar
  10. 10.
    Shrivastava S, Meissner EG, Funk E, et al. Elevated hepatic lipid and interferon stimulated gene expression in HCV GT3 patients relative to non-alcoholic steatohepatitis. Hepatol Int. 2016;10(6):937–946.PubMedCrossRefGoogle Scholar
  11. 11.
    Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095–147.PubMedGoogle Scholar
  12. 12.
    Tracey KJ, Cerami A. Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol. 1993;9(1):317–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Epstein FH, Tilg H, Diehl AM. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med. 2000;343(20):1467–76.CrossRefGoogle Scholar
  14. 14.
    Yamada Y, Kirillova I, Peschon JJ, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci. 1997;94(4):1441–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Danis V, Millington M, Hyland V, Grennan D. Cytokine production by normal human monocytes: inter-subject variation and relationship to an IL-1 receptor antagonist (IL-1Ra) gene polymorphism. Clin Exp Immunol. 1995;99(2):303.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood. 1991;77(8):1627–52.PubMedGoogle Scholar
  17. 17.
    Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Donaldson P, Agarwal K, Craggs A, Craig W, James O, Jones D. HLA and interleukin 1 gene polymorphisms in primary biliary cirrhosis: associations with disease progression and disease susceptibility. Gut. 2001;48(3):397–402.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Allen IC, Scull MA, Moore CB, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009;30(4):556–65.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Dinarello CA. Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med. 1984;311(22):1413–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Kanneganti T-D, Body-Malapel M, Amer A, et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem. 2006;281(48):36560–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell host microbe. 2009;6(1):10–21.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ramos HJ, Lanteri MC, Blahnik G, et al. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog. 2012;8(11):e1003039.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 2009;206(1):79–87.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Dombrowski Y, Peric M, Koglin S, et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med. 2011;3(82):82ra38–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chakraborty S, Kaushik DK, Gupta M, Basu A. Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res. 2010;88(8):1615–31.PubMedGoogle Scholar
  29. 29.
    Bahr MJ, El Menuawy M, Boeker KH, Musholt PB, Manns MP, Lichtinghagen R. Cytokine gene polymorphisms and the susceptibility to liver cirrhosis in patients with chronic hepatitis C. Liver Int. 2003;23(6):420–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Huang Y, Hwang S, Chan C, et al. Serum levels of cytokines in hepatitis C-related liver disease: a longitudinal study. Zhonghua yi xue za zhi =. Chinese medical journal; Free China ed. 1999;62(6):327–33.PubMedGoogle Scholar
  31. 31.
    Farinati F, Cardin R, Bortolami M, Guido M, Rugge M. Oxidative damage, pro-inflammatory cytokines, TGF-alpha and c-myc in chronic HCV-related hepatitis and cirrhosis. World J Gastroenterol. 2006;12(13):2065–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kamari Y, Shaish A, Vax E, et al. Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J Hepatol. 2011;55(5):1086–94.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zhu H, Liu C. Interleukin-1 inhibits hepatitis C virus subgenomic RNA replication by activation of extracellular regulated kinase pathway. J Virol. 2003;77(9):5493–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dinarello CA. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr. 2006;83(2):447–55.Google Scholar
  35. 35.
    Tian Z, Shen X, Feng H, Gao B. IL-1β attenuates IFN-αβ-induced antiviral activity and STAT1 activation in the liver: involvement of proteasome-dependent pathway. J Immunol. 2000;165(7):3959–65.PubMedCrossRefGoogle Scholar
  36. 36.
    Cortez-Pinto H, de Moura MC, Day CP. Non-alcoholic steatohepatitis: from cell biology to clinical practice. J Hepatol. 2006;44(1):197–208.PubMedCrossRefGoogle Scholar
  37. 37.
    Castell JV, Gómez-Lechón MJ, David M, et al. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265(3):621.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Geiger T, Andus T, Klapproth J, Hirano T, Kishimoto T, Heinrich PC. Induction of rat acute-phase proteins by interleukin 6 in vivo. Eur J Immunol. 1988;18(5):717–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Kishimoto T. Interleukin-6: from basic science to medicine-40 years in immunology. Annu Rev Immunol. 2005;23:1–21.PubMedCrossRefGoogle Scholar
  41. 41.
    Machida K, Cheng KT, Sung VM-H, Levine AM, Foung S, Lai MM. Hepatitis C virus induces toll-like receptor 4 expression, leading to enhanced production of beta interferon and interleukin-6. J Virol. 2006;80(2):866–74.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Yamamoto M, Uematsu S, Okamoto T, et al. Enhanced TLR-mediated NF-IL6–dependent gene expression by Trib1 deficiency. J Exp Med. 2007;204(9):2233–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990;10(5):2327–34.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kitani A, Hara M, Hirose T, et al. Autostimulatory effects of IL-6 on excessive B cell differentiation in patients with systemic lupus erythematosus: analysis of IL-6 production and IL-6R expression. Clin Exp Immunol. 1992;88(1):75.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Grivennikov S, Karin M. Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer cell. 2008;13(1):7–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41(16):2502–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Kovalovich K, DeAngelis RA, Li W, Furth EE, Ciliberto G, Taub R. Increased toxin-induced liver injury and fibrosis in interleukin-6–deficient mice. Hepatology. 2000;31(1):149–59.PubMedCrossRefGoogle Scholar
  48. 48.
    Cressman DE, Greenbaum LE, DeAngelis RA, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996;274(5291):1379–83.PubMedCrossRefGoogle Scholar
  49. 49.
    Yamada Y, Fausto N. Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor. Am J Pathol. 1998;152(6):1577.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Yoshimura A, Mori H, Ohishi M, Aki D, Hanada T. Negative regulation of cytokine signaling influences inflammation. Curr Opin Immunol. 2003;15(6):704–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Yang X-P, Schaper F, Teubner A, et al. Interleukin-6 plays a crucial role in the hepatic expression of SOCS3 during acute inflammatory processes in vivo. J Hepatol. 2005;43(4):704–10.PubMedCrossRefGoogle Scholar
  52. 52.
    Heinrich P, Behrmann I, Haan S, Hermanns H, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem j. 2003;374:1–20.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid 1. J Clin Endocrinol Metab. 1998;83(3):847–50.PubMedGoogle Scholar
  54. 54.
    Crichton MB, Nichols JE, Zhao Y, Bulun SE, Simpson ER. Expression of transcripts of interleukin-6 and related cytokines by human breast tumors, breast cancer cells, and adipose stromal cells. Mol Cell Endocrinol. 1996;118(1):215–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Orban Z, Remaley AT, Sampson M, Trajanoski Z, Chrousos GP. The differential effect of food intake and β-adrenergic stimulation on adipose-derived hormones and cytokines in man. J Clin Endocrinol Metab. 1999;84(6):2126–33.PubMedGoogle Scholar
  56. 56.
    Greenberg AS, Nordan RP, McIntosh J, Calvo JC, Scow RO, Jablons D. Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res. 1992;52(15):4113–6.PubMedGoogle Scholar
  57. 57.
    Feingold KR, Doerrler W, Dinarello CA, Fiers W, Grunfeld C. Stimulation of lipolysis in cultured fat cells by tumor necrosis factor, interleukin-1, and the interferons is blocked by inhibition of prostaglandin synthesis. Endocrinology. 1992;130(1):10–6.PubMedGoogle Scholar
  58. 58.
    Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous Adipose Tissue Releases Interleukin-6, But Not Tumor Necrosis Factor-α, in Vivo 1. J Clin Endocrinol Metab. 1997;82(12):4196–200.PubMedGoogle Scholar
  59. 59.
    Bastard J-P, Jardel C, Bruckert E, et al. Elevated Levels of Interleukin 6 Are Reduced in Serum and Subcutaneous Adipose Tissue of Obese Women after Weight Loss 1. J Clin Endocrinol Metab. 2000;85(9):3338–42.PubMedGoogle Scholar
  60. 60.
    Malaguarnera M, Di Fazio I, Romeo MA, Restuccia S, Laurino A, Trovato BA. Elevation of interleukin 6 levels in patients with chronic hepatitis due to hepatitis C virus. J Gastroenterol. 1997;32(2):211–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Naugler WE, Sakurai T, Kim S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317(5834):121–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Park EJ, Lee JH, Yu G-Y, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Basu A, Meyer K, Lai KK, et al. Microarray analyses and molecular profiling of Stat3 signaling pathway induced by hepatitis C virus core protein in human hepatocytes. Virology. 2006;349(2):347–58.PubMedCrossRefGoogle Scholar
  64. 64.
    Lima-Cabello E, Garcia-Mediavilla M, Miquilena-Colina M, et al. Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci. 2011;120:239–50.PubMedCrossRefGoogle Scholar
  65. 65.
    Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol. 2008;103(6):1372–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Kugelmas M, Hill DB, Vivian B, Marsano L, McClain CJ. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology. 2003;38(2):413–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Haukeland JW, Damås JK, Konopski Z, et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol. 2006;44(6):1167–74.PubMedCrossRefGoogle Scholar
  68. 68.
    Mas E, Danjoux M, Garcia V, Carpentier S, Ségui B, Levade T. IL-6 deficiency attenuates murine diet-induced non-alcoholic steatohepatitis. PLoS One. 2009;4(11):e7929.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Yamaguchi K, Itoh Y, Yokomizo C, et al. Blockade of interleukin-6 signaling enhances hepatic steatosis but improves liver injury in methionine choline-deficient diet-fed mice. Laboratory Investig. 2010;90(8):1169–78.CrossRefGoogle Scholar
  70. 70.
    Tilg H, Wilmer A, Vogel W, et al. Serum levels of cytokines in chronic liver diseases. Gastroenterology. 1992;103(1):264–74.PubMedCrossRefGoogle Scholar
  71. 71.
    Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10(1):45–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Diehl A, Yin M, Fleckenstein J, et al. Tumor necrosis factor-alpha induces c-jun during the regenerative response to liver injury. Am J Physiol Gastrointest Liver Physiol. 1994;267(4):G552–G61.Google Scholar
  73. 73.
    Akerman P, Cote P, Yang SQ, et al. Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol. 1992;263(4):G579–G85.Google Scholar
  74. 74.
    Karin M. NF-κB as a critical link between inflammation and cancer. Cold Spring Harbor Perspect Biol. 2009;1(5):a000141.CrossRefGoogle Scholar
  75. 75.
    DECKER K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem. 1990;192(2):245–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol. 2009;36(1):4–12.PubMedCrossRefGoogle Scholar
  77. 77.
    Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity. 1999;10(3):387–98.PubMedCrossRefGoogle Scholar
  78. 78.
    Yoshigai E, Hara T, Okuyama T, et al. Characterization of natural antisense transcripts expressed from interleukin 1β-inducible genes in rat hepatocytes. HOAJ Biol. 2012;1(1):10.CrossRefGoogle Scholar
  79. 79.
    Matsui K, Nishizawa M, Ozaki T, et al. Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology. 2008;47(2):686–97.PubMedCrossRefGoogle Scholar
  80. 80.
    Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106(12):1481.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci. 1989;86(7):2336–40.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci. 1997;94(6):2557–62.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Yin M, Wheeler MD, Kono H, et al. Essential role of tumor necrosis factor α in alcohol-induced liver injury in mice. Gastroenterology. 1999;117(4):942–52.PubMedCrossRefGoogle Scholar
  84. 84.
    Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med. 2000;6(9):998–1003.PubMedCrossRefGoogle Scholar
  85. 85.
    Crespo J, Fern P, Hern M, Mayorga M, Pons-Romero F. Gene expression of tumor necrosis factor [alpha] and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology. 2001;34(6):1158–63.PubMedCrossRefGoogle Scholar
  86. 86.
    Almendral JM, Sommer D, Macdonald-Bravo H, Burckhardt J, Perera J, Bravo R. Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol Cell Biol. 1988;8(5):2140–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Greenberg ME, Greene L, Ziff E. Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC12 cells. J Biol Chem. 1985;260(26):14101–10.PubMedGoogle Scholar
  88. 88.
    Greenberg ME, Ziff EB. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1983;311(5985):433–8.CrossRefGoogle Scholar
  89. 89.
    Friedman RL, Manly SP, McMahon M, Kerr IM, Stark GR. Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell. 1984;38(3):745–55.PubMedCrossRefGoogle Scholar
  90. 90.
    Larner A, Jonak G, Cheng Y, Korant B, Knight E, Darnell J. Transcriptional induction of two genes in human cells by beta interferon. Proc Natl Acad Sci. 1984;81(21):6733–7.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Larner A, Chaudhuri A, Darnell J. Transcriptional induction by interferon. New protein (s) determine the extent and length of the induction. J Biol Chem. 1986;261(1):453–9.PubMedGoogle Scholar
  92. 92.
    Lee T, Lee G, Ziff E, Vilcek J. Isolation and characterization of eight tumor necrosis factor-induced gene sequences from human fibroblasts. Mol Cell Biol. 1990;10(5):1982–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Beadling C, Johnson KW, Smith KA. Isolation of interleukin 2-induced immediate-early genes. Proc Natl Acad Sci. 1993;90(7):2719–23.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178(6):2249–54.PubMedCrossRefGoogle Scholar
  95. 95.
    Mosmann T, Coffman R. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7(1):145–73.PubMedCrossRefGoogle Scholar
  96. 96.
    Aoki T, Kikuchi H, Miyatake S, et al. Interleukin 5 enhances interleukin 2-mediated lymphokine-activated killer activity. J Exp Med. 1989;170(2):583–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Balkwill F, Burke F. The cytokine network. Immunology today. 1989;10(9):299–304.PubMedCrossRefGoogle Scholar
  98. 98.
    Spits H, Yssel H, Paliard X, Kastelein R, Figdor C, De Vries J. IL-4 inhibits IL-2-mediated induction of human lymphokine-activated killer cells, but not the generation of antigen-specific cytotoxic T lymphocytes in mixed leukocyte cultures. J Immunol. 1988;141(1):29–36.PubMedGoogle Scholar
  99. 99.
    Whitmire JK, Tan JT, Whitton JL. Interferon-γ acts directly on CD8 + T cells to increase their abundance during virus infection. J Exp Med. 2005;201(7):1053–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ye J, Ortaldo JR, Conlon K, Winkler-Pickett R, Young HA. Cellular and molecular mechanisms of IFN-gamma production induced by IL-2 and IL-12 in a human NK cell line. J Leukoc Biol. 1995;58(2):225–33.PubMedGoogle Scholar
  101. 101.
    Darnell J, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–21.PubMedCrossRefGoogle Scholar
  102. 102.
    Kusters S, Gantner F, Kunstle G, Tiegs G. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology. 1996;111(2):462–71.PubMedCrossRefGoogle Scholar
  103. 103.
    Toyonaga T, Hino O, Sugai S, et al. Chronic active hepatitis in transgenic mice expressing interferon-gamma in the liver. Proc Natl Acad Sci. 1994;91(2):614–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Dienes HP, Hess G, Wöorsdörfer M, et al. Ultrastructural localization of interferon-producing cells in the livers of patients with chronic hepatitis B. Hepatology. 1991;13(2):321–6.PubMedGoogle Scholar
  105. 105.
    Daniels H, Eddleston A, Alexander G, Williams R, Meager A. Spontaneous production of tumour necrosis factor α and interleukin-1β during interferon-α treatment of chronic HBV infection. Lancet. 1990;335(8694):875–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Kakumu S, Fuji A, Yoshioka K, Tahara H. Serum levels of alpha-interferon and gamma-interferon in patients with acute and chronic viral hepatitis. Hepatogastroenterology. 1989;36(2):97–102.PubMedGoogle Scholar
  107. 107.
    Cacciarelli TV, Martinez OM, Gish RG, Villanueva JC, Krams SM. Immunoregulatory cytokines in chronic hepatitis C virus infection: Pre-and posttreatment with interferon alfa. Hepatology. 1996;24(1):6–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Frese M, Schwärzle V, Barth K, et al. Interferon-γ inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology. 2002;35(3):694–703.PubMedCrossRefGoogle Scholar
  109. 109.
    Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol. 1999;17(1):189–220.PubMedCrossRefGoogle Scholar
  110. 110.
    Li K, Foy E, Ferreon JC, et al. Immune evasion by hepatitis C virus NS3/4 A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci USA. 2005;102(8):2992.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Pacifico L, Di Renzo L, Anania C, et al. Increased T-helper interferon-γ-secreting cells in obese children. Eur J Endocrinol. 2006;154(5):691–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Caldwell SH, Crespo DM, Kang HS, Al-Osaimi AM. Obesity and hepatocellular carcinoma. Gastroenterology. 2004;127(5):S97–S103.PubMedCrossRefGoogle Scholar
  113. 113.
    Stickel F, Hellerbrand C. Non-alcoholic fatty liver disease as a risk factor for hepatocellular carcinoma: mechanisms and implications. Gut. 2010:gut. 2009.199661.Google Scholar
  114. 114.
    Bertola A, Bonnafous S, Anty R, et al. Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS One. 2010;5(10):e13577.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Guebre-Xabier M, Yang S, Lin HZ, Schwenk R, Krzych U, Diehl AM. Altered hepatic lymphocyte subpopulations in obesity-related murine fatty livers: Potential mechanism for sensitization to liver damage. Hepatology. 2000;31(3):633–40.PubMedCrossRefGoogle Scholar
  116. 116.
    Li Z, Soloski MJ, Diehl AM. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology. 2005;42(4):880–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Rabia Nawaz
    • 1
  • Sadia Zahid
    • 1
  • Muhammad Idrees
    • 2
  • Shazia Rafique
    • 1
  • Muhammad Shahid
    • 1
  • Ammara Ahad
    • 1
  • Iram Amin
    • 1
  • Iqra Almas
    • 1
  • Samia Afzal
    • 1
  1. 1.National Center of Excellence in Molecular BiologyUniversity of the PunjabLahorePakistan
  2. 2.Hazara University, Khyber PakhtunkhawaDhodialPakistan

Personalised recommendations