Skip to main content

Advertisement

Log in

HCV-induced regulatory alterations of IL-1β, IL-6, TNF-α, and IFN-ϒ operative, leading liver en-route to non-alcoholic steatohepatitis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Over the course of time, Hepatitis C has become a universal health menace. Its deleterious effects on human liver encompass a lot of physiological, genetic as well as epigenetic alterations. Fatty liver (Hepatic steatosis) is an inflammation having multifactorial ancestries; one of them is HCV (steatohepatitis). HCV boosts several cellular pathways involving up-regulation of a number of cytokines. Current study reviews the regulation of some selective key cytokines during HCV infection, to help generate an improved understanding of their role. These cytokines, IL-1β, IL-6, TNF-α, and IFN-ϒ, are inflammatory markers of the body. These particular markers along with others help hepatocytes against viral infestation. However, recently, their association has been found in degradation of liver on the trail heading to non-alcoholic steatohepatitis (NASH). Consequently, the disturbance in their equilibrium has been repeatedly reported during HCV infection. Quite a number of findings are affirming their up-regulation. Although these cell markers are stimulated by hepatocytes as their standard protection mechanism, but modern studies have testified the paradoxical nature of this defense line. Nevertheless, direct molecular or epigenetic research is needed to question the actual molecular progressions and directions commanding liver to steatosis, cirrhosis, or eventually HCC (Hepatocellular Carcinoma).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Durier N, Nguyen C, White LJ. Treatment of hepatitis C as prevention: a modeling case study in Vietnam. PLoS One. 2012;7(4):e34548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robertson B, Myers G, Howard C, et al. Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. Arch Virol. 1998;143(12):2493–503.

    Article  CAS  PubMed  Google Scholar 

  3. Timpe J, McKeating J. Hepatitis C virus entry: possible targets for therapy. Gut. 2008;57(12):1728–37.

    Article  CAS  PubMed  Google Scholar 

  4. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346(16):1221–31.

    Article  CAS  PubMed  Google Scholar 

  5. Patel JH, Cobbold JFL, Thomas HC, Taylor-Robinson SD. Hepatitis C and hepatic steatosis. QJM. 2010;103(5):293–303.

    Article  CAS  PubMed  Google Scholar 

  6. van der Poorten D, George J. Current and novel therapies for the treatment of nonalcoholic steatohepatitis. Hepatol Int. 2007;1(3):343–54.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hwang SJ, Luo JC, Chu CW, et al. Hepatic steatosis in chronic hepatitis C virus infection: prevalence and clinical correlation. J Gastroenterol Hepatol. 2001;16(2):190–5.

    Article  CAS  PubMed  Google Scholar 

  8. Thomopoulos KC, Arvaniti V, Tsamantas AC, et al. Prevalence of liver steatosis in patients with chronic hepatitis B: a study of associated factors and of relationship with fibrosis. Eur J Gastroenterol Hepatol. 2006;18(3):233–7.

    Article  PubMed  Google Scholar 

  9. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415–28.

    Article  CAS  PubMed  Google Scholar 

  10. Shrivastava S, Meissner EG, Funk E, et al. Elevated hepatic lipid and interferon stimulated gene expression in HCV GT3 patients relative to non-alcoholic steatohepatitis. Hepatol Int. 2016;10(6):937–946.

    Article  PubMed  Google Scholar 

  11. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095–147.

    CAS  PubMed  Google Scholar 

  12. Tracey KJ, Cerami A. Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol. 1993;9(1):317–43.

    Article  CAS  PubMed  Google Scholar 

  13. Epstein FH, Tilg H, Diehl AM. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med. 2000;343(20):1467–76.

    Article  Google Scholar 

  14. Yamada Y, Kirillova I, Peschon JJ, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci. 1997;94(4):1441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Danis V, Millington M, Hyland V, Grennan D. Cytokine production by normal human monocytes: inter-subject variation and relationship to an IL-1 receptor antagonist (IL-1Ra) gene polymorphism. Clin Exp Immunol. 1995;99(2):303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood. 1991;77(8):1627–52.

    CAS  PubMed  Google Scholar 

  17. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.

    Article  CAS  PubMed  Google Scholar 

  18. Donaldson P, Agarwal K, Craggs A, Craig W, James O, Jones D. HLA and interleukin 1 gene polymorphisms in primary biliary cirrhosis: associations with disease progression and disease susceptibility. Gut. 2001;48(3):397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allen IC, Scull MA, Moore CB, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009;30(4):556–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dinarello CA. Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med. 1984;311(22):1413–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kanneganti T-D, Body-Malapel M, Amer A, et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem. 2006;281(48):36560–8.

    Article  CAS  PubMed  Google Scholar 

  22. Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell host microbe. 2009;6(1):10–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–26.

    Article  CAS  PubMed  Google Scholar 

  24. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramos HJ, Lanteri MC, Blahnik G, et al. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog. 2012;8(11):e1003039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 2009;206(1):79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dombrowski Y, Peric M, Koglin S, et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med. 2011;3(82):82ra38–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chakraborty S, Kaushik DK, Gupta M, Basu A. Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res. 2010;88(8):1615–31.

    CAS  PubMed  Google Scholar 

  29. Bahr MJ, El Menuawy M, Boeker KH, Musholt PB, Manns MP, Lichtinghagen R. Cytokine gene polymorphisms and the susceptibility to liver cirrhosis in patients with chronic hepatitis C. Liver Int. 2003;23(6):420–5.

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Hwang S, Chan C, et al. Serum levels of cytokines in hepatitis C-related liver disease: a longitudinal study. Zhonghua yi xue za zhi =. Chinese medical journal; Free China ed. 1999;62(6):327–33.

    CAS  PubMed  Google Scholar 

  31. Farinati F, Cardin R, Bortolami M, Guido M, Rugge M. Oxidative damage, pro-inflammatory cytokines, TGF-alpha and c-myc in chronic HCV-related hepatitis and cirrhosis. World J Gastroenterol. 2006;12(13):2065–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamari Y, Shaish A, Vax E, et al. Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J Hepatol. 2011;55(5):1086–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu H, Liu C. Interleukin-1 inhibits hepatitis C virus subgenomic RNA replication by activation of extracellular regulated kinase pathway. J Virol. 2003;77(9):5493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dinarello CA. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr. 2006;83(2):447–55.

    Google Scholar 

  35. Tian Z, Shen X, Feng H, Gao B. IL-1β attenuates IFN-αβ-induced antiviral activity and STAT1 activation in the liver: involvement of proteasome-dependent pathway. J Immunol. 2000;165(7):3959–65.

    Article  CAS  PubMed  Google Scholar 

  36. Cortez-Pinto H, de Moura MC, Day CP. Non-alcoholic steatohepatitis: from cell biology to clinical practice. J Hepatol. 2006;44(1):197–208.

    Article  CAS  PubMed  Google Scholar 

  37. Castell JV, Gómez-Lechón MJ, David M, et al. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237–9.

    Article  CAS  PubMed  Google Scholar 

  38. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265(3):621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geiger T, Andus T, Klapproth J, Hirano T, Kishimoto T, Heinrich PC. Induction of rat acute-phase proteins by interleukin 6 in vivo. Eur J Immunol. 1988;18(5):717–21.

    Article  CAS  PubMed  Google Scholar 

  40. Kishimoto T. Interleukin-6: from basic science to medicine-40 years in immunology. Annu Rev Immunol. 2005;23:1–21.

    Article  CAS  PubMed  Google Scholar 

  41. Machida K, Cheng KT, Sung VM-H, Levine AM, Foung S, Lai MM. Hepatitis C virus induces toll-like receptor 4 expression, leading to enhanced production of beta interferon and interleukin-6. J Virol. 2006;80(2):866–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamamoto M, Uematsu S, Okamoto T, et al. Enhanced TLR-mediated NF-IL6–dependent gene expression by Trib1 deficiency. J Exp Med. 2007;204(9):2233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990;10(5):2327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kitani A, Hara M, Hirose T, et al. Autostimulatory effects of IL-6 on excessive B cell differentiation in patients with systemic lupus erythematosus: analysis of IL-6 production and IL-6R expression. Clin Exp Immunol. 1992;88(1):75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grivennikov S, Karin M. Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer cell. 2008;13(1):7–9.

    Article  CAS  PubMed  Google Scholar 

  46. Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41(16):2502–12.

    Article  CAS  PubMed  Google Scholar 

  47. Kovalovich K, DeAngelis RA, Li W, Furth EE, Ciliberto G, Taub R. Increased toxin-induced liver injury and fibrosis in interleukin-6–deficient mice. Hepatology. 2000;31(1):149–59.

    Article  CAS  PubMed  Google Scholar 

  48. Cressman DE, Greenbaum LE, DeAngelis RA, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996;274(5291):1379–83.

    Article  CAS  PubMed  Google Scholar 

  49. Yamada Y, Fausto N. Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor. Am J Pathol. 1998;152(6):1577.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshimura A, Mori H, Ohishi M, Aki D, Hanada T. Negative regulation of cytokine signaling influences inflammation. Curr Opin Immunol. 2003;15(6):704–8.

    Article  CAS  PubMed  Google Scholar 

  51. Yang X-P, Schaper F, Teubner A, et al. Interleukin-6 plays a crucial role in the hepatic expression of SOCS3 during acute inflammatory processes in vivo. J Hepatol. 2005;43(4):704–10.

    Article  CAS  PubMed  Google Scholar 

  52. Heinrich P, Behrmann I, Haan S, Hermanns H, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem j. 2003;374:1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid 1. J Clin Endocrinol Metab. 1998;83(3):847–50.

    CAS  PubMed  Google Scholar 

  54. Crichton MB, Nichols JE, Zhao Y, Bulun SE, Simpson ER. Expression of transcripts of interleukin-6 and related cytokines by human breast tumors, breast cancer cells, and adipose stromal cells. Mol Cell Endocrinol. 1996;118(1):215–20.

    Article  CAS  PubMed  Google Scholar 

  55. Orban Z, Remaley AT, Sampson M, Trajanoski Z, Chrousos GP. The differential effect of food intake and β-adrenergic stimulation on adipose-derived hormones and cytokines in man. J Clin Endocrinol Metab. 1999;84(6):2126–33.

    CAS  PubMed  Google Scholar 

  56. Greenberg AS, Nordan RP, McIntosh J, Calvo JC, Scow RO, Jablons D. Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res. 1992;52(15):4113–6.

    CAS  PubMed  Google Scholar 

  57. Feingold KR, Doerrler W, Dinarello CA, Fiers W, Grunfeld C. Stimulation of lipolysis in cultured fat cells by tumor necrosis factor, interleukin-1, and the interferons is blocked by inhibition of prostaglandin synthesis. Endocrinology. 1992;130(1):10–6.

    CAS  PubMed  Google Scholar 

  58. Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous Adipose Tissue Releases Interleukin-6, But Not Tumor Necrosis Factor-α, in Vivo 1. J Clin Endocrinol Metab. 1997;82(12):4196–200.

    CAS  PubMed  Google Scholar 

  59. Bastard J-P, Jardel C, Bruckert E, et al. Elevated Levels of Interleukin 6 Are Reduced in Serum and Subcutaneous Adipose Tissue of Obese Women after Weight Loss 1. J Clin Endocrinol Metab. 2000;85(9):3338–42.

    CAS  PubMed  Google Scholar 

  60. Malaguarnera M, Di Fazio I, Romeo MA, Restuccia S, Laurino A, Trovato BA. Elevation of interleukin 6 levels in patients with chronic hepatitis due to hepatitis C virus. J Gastroenterol. 1997;32(2):211–5.

    Article  CAS  PubMed  Google Scholar 

  61. Naugler WE, Sakurai T, Kim S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317(5834):121–4.

    Article  CAS  PubMed  Google Scholar 

  62. Park EJ, Lee JH, Yu G-Y, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Basu A, Meyer K, Lai KK, et al. Microarray analyses and molecular profiling of Stat3 signaling pathway induced by hepatitis C virus core protein in human hepatocytes. Virology. 2006;349(2):347–58.

    Article  CAS  PubMed  Google Scholar 

  64. Lima-Cabello E, Garcia-Mediavilla M, Miquilena-Colina M, et al. Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci. 2011;120:239–50.

    Article  CAS  PubMed  Google Scholar 

  65. Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol. 2008;103(6):1372–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kugelmas M, Hill DB, Vivian B, Marsano L, McClain CJ. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology. 2003;38(2):413–9.

    Article  CAS  PubMed  Google Scholar 

  67. Haukeland JW, Damås JK, Konopski Z, et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol. 2006;44(6):1167–74.

    Article  CAS  PubMed  Google Scholar 

  68. Mas E, Danjoux M, Garcia V, Carpentier S, Ségui B, Levade T. IL-6 deficiency attenuates murine diet-induced non-alcoholic steatohepatitis. PLoS One. 2009;4(11):e7929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yamaguchi K, Itoh Y, Yokomizo C, et al. Blockade of interleukin-6 signaling enhances hepatic steatosis but improves liver injury in methionine choline-deficient diet-fed mice. Laboratory Investig. 2010;90(8):1169–78.

    Article  CAS  Google Scholar 

  70. Tilg H, Wilmer A, Vogel W, et al. Serum levels of cytokines in chronic liver diseases. Gastroenterology. 1992;103(1):264–74.

    Article  CAS  PubMed  Google Scholar 

  71. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10(1):45–65.

    Article  CAS  PubMed  Google Scholar 

  72. Diehl A, Yin M, Fleckenstein J, et al. Tumor necrosis factor-alpha induces c-jun during the regenerative response to liver injury. Am J Physiol Gastrointest Liver Physiol. 1994;267(4):G552–G61.

    CAS  Google Scholar 

  73. Akerman P, Cote P, Yang SQ, et al. Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol. 1992;263(4):G579–G85.

    CAS  Google Scholar 

  74. Karin M. NF-κB as a critical link between inflammation and cancer. Cold Spring Harbor Perspect Biol. 2009;1(5):a000141.

    Article  CAS  Google Scholar 

  75. DECKER K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem. 1990;192(2):245–61.

    Article  CAS  PubMed  Google Scholar 

  76. Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol. 2009;36(1):4–12.

    Article  CAS  PubMed  Google Scholar 

  77. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity. 1999;10(3):387–98.

    Article  CAS  PubMed  Google Scholar 

  78. Yoshigai E, Hara T, Okuyama T, et al. Characterization of natural antisense transcripts expressed from interleukin 1β-inducible genes in rat hepatocytes. HOAJ Biol. 2012;1(1):10.

    Article  Google Scholar 

  79. Matsui K, Nishizawa M, Ozaki T, et al. Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology. 2008;47(2):686–97.

    Article  CAS  PubMed  Google Scholar 

  80. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106(12):1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci. 1989;86(7):2336–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci. 1997;94(6):2557–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yin M, Wheeler MD, Kono H, et al. Essential role of tumor necrosis factor α in alcohol-induced liver injury in mice. Gastroenterology. 1999;117(4):942–52.

    Article  CAS  PubMed  Google Scholar 

  84. Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med. 2000;6(9):998–1003.

    Article  CAS  PubMed  Google Scholar 

  85. Crespo J, Fern P, Hern M, Mayorga M, Pons-Romero F. Gene expression of tumor necrosis factor [alpha] and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology. 2001;34(6):1158–63.

    Article  CAS  PubMed  Google Scholar 

  86. Almendral JM, Sommer D, Macdonald-Bravo H, Burckhardt J, Perera J, Bravo R. Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol Cell Biol. 1988;8(5):2140–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Greenberg ME, Greene L, Ziff E. Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC12 cells. J Biol Chem. 1985;260(26):14101–10.

    CAS  PubMed  Google Scholar 

  88. Greenberg ME, Ziff EB. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1983;311(5985):433–8.

    Article  Google Scholar 

  89. Friedman RL, Manly SP, McMahon M, Kerr IM, Stark GR. Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell. 1984;38(3):745–55.

    Article  CAS  PubMed  Google Scholar 

  90. Larner A, Jonak G, Cheng Y, Korant B, Knight E, Darnell J. Transcriptional induction of two genes in human cells by beta interferon. Proc Natl Acad Sci. 1984;81(21):6733–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Larner A, Chaudhuri A, Darnell J. Transcriptional induction by interferon. New protein (s) determine the extent and length of the induction. J Biol Chem. 1986;261(1):453–9.

    CAS  PubMed  Google Scholar 

  92. Lee T, Lee G, Ziff E, Vilcek J. Isolation and characterization of eight tumor necrosis factor-induced gene sequences from human fibroblasts. Mol Cell Biol. 1990;10(5):1982–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beadling C, Johnson KW, Smith KA. Isolation of interleukin 2-induced immediate-early genes. Proc Natl Acad Sci. 1993;90(7):2719–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178(6):2249–54.

    Article  CAS  PubMed  Google Scholar 

  95. Mosmann T, Coffman R. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7(1):145–73.

    Article  CAS  PubMed  Google Scholar 

  96. Aoki T, Kikuchi H, Miyatake S, et al. Interleukin 5 enhances interleukin 2-mediated lymphokine-activated killer activity. J Exp Med. 1989;170(2):583–8.

    Article  CAS  PubMed  Google Scholar 

  97. Balkwill F, Burke F. The cytokine network. Immunology today. 1989;10(9):299–304.

    Article  CAS  PubMed  Google Scholar 

  98. Spits H, Yssel H, Paliard X, Kastelein R, Figdor C, De Vries J. IL-4 inhibits IL-2-mediated induction of human lymphokine-activated killer cells, but not the generation of antigen-specific cytotoxic T lymphocytes in mixed leukocyte cultures. J Immunol. 1988;141(1):29–36.

    CAS  PubMed  Google Scholar 

  99. Whitmire JK, Tan JT, Whitton JL. Interferon-γ acts directly on CD8 + T cells to increase their abundance during virus infection. J Exp Med. 2005;201(7):1053–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ye J, Ortaldo JR, Conlon K, Winkler-Pickett R, Young HA. Cellular and molecular mechanisms of IFN-gamma production induced by IL-2 and IL-12 in a human NK cell line. J Leukoc Biol. 1995;58(2):225–33.

    CAS  PubMed  Google Scholar 

  101. Darnell J, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–21.

    Article  CAS  PubMed  Google Scholar 

  102. Kusters S, Gantner F, Kunstle G, Tiegs G. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology. 1996;111(2):462–71.

    Article  CAS  PubMed  Google Scholar 

  103. Toyonaga T, Hino O, Sugai S, et al. Chronic active hepatitis in transgenic mice expressing interferon-gamma in the liver. Proc Natl Acad Sci. 1994;91(2):614–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dienes HP, Hess G, Wöorsdörfer M, et al. Ultrastructural localization of interferon-producing cells in the livers of patients with chronic hepatitis B. Hepatology. 1991;13(2):321–6.

    CAS  PubMed  Google Scholar 

  105. Daniels H, Eddleston A, Alexander G, Williams R, Meager A. Spontaneous production of tumour necrosis factor α and interleukin-1β during interferon-α treatment of chronic HBV infection. Lancet. 1990;335(8694):875–7.

    Article  CAS  PubMed  Google Scholar 

  106. Kakumu S, Fuji A, Yoshioka K, Tahara H. Serum levels of alpha-interferon and gamma-interferon in patients with acute and chronic viral hepatitis. Hepatogastroenterology. 1989;36(2):97–102.

    CAS  PubMed  Google Scholar 

  107. Cacciarelli TV, Martinez OM, Gish RG, Villanueva JC, Krams SM. Immunoregulatory cytokines in chronic hepatitis C virus infection: Pre-and posttreatment with interferon alfa. Hepatology. 1996;24(1):6–9.

    Article  CAS  PubMed  Google Scholar 

  108. Frese M, Schwärzle V, Barth K, et al. Interferon-γ inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology. 2002;35(3):694–703.

    Article  CAS  PubMed  Google Scholar 

  109. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol. 1999;17(1):189–220.

    Article  CAS  PubMed  Google Scholar 

  110. Li K, Foy E, Ferreon JC, et al. Immune evasion by hepatitis C virus NS3/4 A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci USA. 2005;102(8):2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pacifico L, Di Renzo L, Anania C, et al. Increased T-helper interferon-γ-secreting cells in obese children. Eur J Endocrinol. 2006;154(5):691–7.

    Article  CAS  PubMed  Google Scholar 

  112. Caldwell SH, Crespo DM, Kang HS, Al-Osaimi AM. Obesity and hepatocellular carcinoma. Gastroenterology. 2004;127(5):S97–S103.

    Article  CAS  PubMed  Google Scholar 

  113. Stickel F, Hellerbrand C. Non-alcoholic fatty liver disease as a risk factor for hepatocellular carcinoma: mechanisms and implications. Gut. 2010:gut. 2009.199661.

  114. Bertola A, Bonnafous S, Anty R, et al. Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS One. 2010;5(10):e13577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Guebre-Xabier M, Yang S, Lin HZ, Schwenk R, Krzych U, Diehl AM. Altered hepatic lymphocyte subpopulations in obesity-related murine fatty livers: Potential mechanism for sensitization to liver damage. Hepatology. 2000;31(3):633–40.

    Article  CAS  PubMed  Google Scholar 

  116. Li Z, Soloski MJ, Diehl AM. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology. 2005;42(4):880–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

The work is a product of the intellectual environment of the whole team. Both RN and SZ have contributed equally to the exploration of data, its compilation, acquisition, and writing of the manuscript. AA has helped in data compilation and manuscript writing. MS and IA have helped in acquisition of the data of the manuscript. MI, SR, and SA have critically gone through the whole work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Afzal.

Ethics declarations

Funding

No funding was obtained for this study.

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: John Di Battista.

Rabia Nawaz and Sadia Zahid contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, R., Zahid, S., Idrees, M. et al. HCV-induced regulatory alterations of IL-1β, IL-6, TNF-α, and IFN-ϒ operative, leading liver en-route to non-alcoholic steatohepatitis. Inflamm. Res. 66, 477–486 (2017). https://doi.org/10.1007/s00011-017-1029-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1029-3

Keywords

Navigation