Skip to main content

Advertisement

Log in

Adenosine effectively restores endotoxin-induced inhibition of human neutrophil chemotaxis via A1 receptor-p38 pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Neutrophil chemotaxis plays an essential role in recruiting neutrophils to sites of inflammation. Neutrophil chemotaxis is suppressed both after exposure to lipopolysaccharide (LPS) in vitro and during clinical and experimental endotoxemia, leading to serious consequences. Adenosine (ADO) is a potent anti-inflammatory agent that acts on a variety of neutrophil functions. However, its effects on human neutrophil chemotaxis during infection have been less well characterized. In the present study, we investigated the effect of ADO and its receptor-specific antagonist and agonist on neutrophil chemotaxis in an in vitro LPS-stimulated model. The results showed that increasing the concentration of ADO effectively restored the LPS-inhibited neutrophil chemotaxis to IL-8. A similar phenomenon occurred after intervention with a selective A1 receptor agonist but not with a selective antagonist. Pre-treatment with cAMP antagonist failed to restore LPS-inhibited chemotaxis. Furthermore, protein array and western blot analysis showed that the activation of A1 receptor significantly decreased LPS-induced p38 MAPK phosphorylation. However, the surface expression of the A1 receptor in LPS-stimulated neutrophils was not significantly changed. Taken together, these data indicated that ADO restored the LPS-inhibited chemotaxis via the A1 receptor, which downregulated the phosphorylation level of p38 MAPK, making this a promising new therapeutic strategy for infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wagner JG, Roth RA. Neutrophil migration during endotoxemia. J Leukoc Biol. 1999;66(1):10–24.

    CAS  PubMed  Google Scholar 

  2. Barletta KE, Ley K, Mehrad B. Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol. 2012;32(4):856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luster AD. Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;338(7):436–45.

    Article  CAS  PubMed  Google Scholar 

  4. Itoh Y, Okanoue T. Chemotactic cytokines (chemokines) in human hepatitis and experimental hepatitis models: which ones play the crucial role? J Gastroenterol. 2000;35(9):724–5.

    Article  CAS  PubMed  Google Scholar 

  5. Heit B, et al. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J Cell Biol. 2002;159(1):91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heit B, et al. PTEN functions to ‘prioritize’ chemotactic cues and prevent ‘distraction’ in migrating neutrophils. Nat Immunol. 2008;9(7):743–52.

    Article  CAS  PubMed  Google Scholar 

  7. Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. 2006;6(7):541–50.

    Article  CAS  PubMed  Google Scholar 

  8. Maderazo EG, et al. Polymorphonuclear leukocyte migration abnormalities and their significance in seriously traumatized patients. Ann Surg. 1983;198(6):736–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berger D, et al. Incidence and pathophysiological relevance of postoperative endotoxemia. FEMS Immunol Med Microbiol. 1995;11(4):285–90.

    Article  CAS  PubMed  Google Scholar 

  10. Matsuura M. Structural modifications of bacterial lipopolysaccharide that facilitate gram-negative bacteria evasion of host innate immunity. Front Immunol. 2013;4:109.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Putker F, Bos MP, Tommassen J. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol Rev. 2015;39(6):985–1002.

    Article  PubMed  Google Scholar 

  12. Shimazu R, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999;189(11):1777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bohmer RH, Trinkle LS, Staneck JL. Dose effects of LPS on neutrophils in a whole blood flow cytometric assay of phagocytosis and oxidative burst. Cytometry. 1992;13(5):525–31.

    Article  CAS  PubMed  Google Scholar 

  14. Bishop NC, et al. Pre-exercise carbohydrate status and immune responses to prolonged cycling: I. Effect on neutrophil degranulation. Int J Sport Nutr Exerc Metab. 2001;11(4):490–502.

    Article  CAS  PubMed  Google Scholar 

  15. Guthrie LA, et al. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med. 1984;160(6):1656–71.

    Article  CAS  PubMed  Google Scholar 

  16. Akgul C, Moulding DA, Edwards SW. Molecular control of neutrophil apoptosis. FEBS Lett. 2001;487(3):318–22.

    Article  CAS  PubMed  Google Scholar 

  17. Harkness RA, Simmonds RJ, Coade SB. Purine transport and metabolism in man: the effect of exercise on concentrations of purine bases, nucleosides and nucleotides in plasma, urine, leucocytes and erythrocytes. Clin Sci (Lond). 1983;64(3):333–40.

    Article  CAS  Google Scholar 

  18. Bours MJ, et al. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 2006;112(2):358–404.

    Article  CAS  PubMed  Google Scholar 

  19. Hasko G, et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008;7(9):759–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov. 2006;5(3):247–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fresco P, et al. Release inhibitory receptors activation favours the A2A-adenosine receptor-mediated facilitation of noradrenaline release in isolated rat tail artery. Br J Pharmacol. 2002;136(2):230–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gessi S, et al. The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther. 2008;117(1):123–40.

    Article  CAS  PubMed  Google Scholar 

  23. Quinn MT, DeLeo FR, Bokoch GM. Neutrophil methods and protocols. Preface. Methods Mol Biol. 2007;412:vii–viii.

    PubMed  Google Scholar 

  24. Wang X, et al. Exogenous carbon monoxide inhibits neutrophil infiltration in LPS-induced sepsis by interfering with FPR1 via p38 MAPK but not GRK2. Oncotarget. 2016;7(23):34250–65.

    PubMed  PubMed Central  Google Scholar 

  25. Janetopoulos C, Firtel RA. Directional sensing during chemotaxis. FEBS Lett. 2008;582(14):2075–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Devreotes P, Janetopoulos C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J Biol Chem. 2003;278(23):20445–8.

    Article  CAS  PubMed  Google Scholar 

  27. Dilao R, Hauser MJ. Chemotaxis with directional sensing during Dictyostelium aggregation. C R Biol. 2013;336(11–12):565–71.

    Article  PubMed  Google Scholar 

  28. Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases. Blood. 2000;95(10):3032–43.

    CAS  PubMed  Google Scholar 

  29. Perez-Aso M, et al. Adenosine A2A receptor and TNF-alpha regulate the circadian machinery of the human monocytic THP-1 cells. Inflammation. 2013;36(1):152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Swain SD, et al. Inhibition of the neutrophil NADPH oxidase by adenosine is associated with increased movement of flavocytochrome b between subcellular fractions. Inflammation. 2003;27(1):45–58.

    Article  CAS  PubMed  Google Scholar 

  31. Salmon JE, Cronstein BN. Fc gamma receptor-mediated functions in neutrophils are modulated by adenosine receptor occupancy. A1 receptors are stimulatory and A2 receptors are inhibitory. J Immunol. 1990;145(7):2235–40.

    CAS  PubMed  Google Scholar 

  32. van der Hoeven D, et al. A role for the low-affinity A2B adenosine receptor in regulating superoxide generation by murine neutrophils. J Pharmacol Exp Ther. 2011;338(3):1004–12.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McColl SR, et al. Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils. FASEB J. 2006;20(1):187–9.

    CAS  PubMed  Google Scholar 

  34. Inoue Y, et al. A3 and P2Y2 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis. Shock. 2008;30(2):173–7.

    PubMed  PubMed Central  Google Scholar 

  35. Jordan JE, et al. A(3) adenosine receptor activation attenuates neutrophil function and neutrophil-mediated reperfusion injury. Am J Physiol. 1999;277(5 Pt 2):H1895–H905.

    CAS  PubMed  Google Scholar 

  36. Foxman EF, Kunkel EJ, Butcher EC. Integrating conflicting chemotactic signals. The role of memory in leukocyte navigation. J Cell Biol. 1999;147(3):577–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McLeish KR, et al. Exocytosis of neutrophil granule subsets and activation of prolyl isomerase 1 are required for respiratory burst priming. J Innate Immun. 2013;5(3):277–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rolas L, et al. Inhibition of mammalian target of rapamycin aggravates the respiratory burst defect of neutrophils from decompensated patients with cirrhosis. Hepatology. 2013;57(3):1163–71.

    Article  CAS  PubMed  Google Scholar 

  39. Marin V, et al. The p38 mitogen-activated protein kinase pathway plays a critical role in thrombin-induced endothelial chemokine production and leukocyte recruitment. Blood. 2001;98(3):667–73.

    Article  CAS  PubMed  Google Scholar 

  40. Pouliot M, et al. Expression and activity of prostaglandin endoperoxide synthase-2 in agonist-activated human neutrophils. FASEB J. 1998;12(12):1109–23.

    CAS  PubMed  Google Scholar 

  41. Armstrong RA. Investigation of the inhibitory effects of PGE2 and selective EP agonists on chemotaxis of human neutrophils. Br J Pharmacol. 1995;116(7):2903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flamand N, et al. Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene biosynthesis in human neutrophils. Mol Pharmacol. 2002;62(2):250–6.

    Article  CAS  PubMed  Google Scholar 

  43. Flamand N, et al. Adenosine, a potent natural suppressor of arachidonic acid release and leukotriene biosynthesis in human neutrophils. Am J Respir Crit Care Med. 2000;161(2 Pt 2):S88–S94.

    Article  CAS  PubMed  Google Scholar 

  44. Cronstein BN, et al. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest. 1990;85(4):1150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cadieux JS, et al. Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal. J Cell Sci. 2005;118(Pt 7):1437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pouliot M, et al. Adenosine up-regulates cyclooxygenase-2 in human granulocytes: impact on the balance of eicosanoid generation. J Immunol. 2002;169(9):5279–86.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China, No. 81071546, No. 81272148, No. 81171786, No. 81471903 and No. 81301657.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingwei Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Bernhard Gibbs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zheng, S., Xiong, Y. et al. Adenosine effectively restores endotoxin-induced inhibition of human neutrophil chemotaxis via A1 receptor-p38 pathway. Inflamm. Res. 66, 353–364 (2017). https://doi.org/10.1007/s00011-016-1021-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-1021-3

Keywords

Navigation