Skip to main content

Advertisement

Log in

The TLR4–NOS1–AP1 signaling axis regulates macrophage polarization

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Macrophages polarize to proinflammatory M1 or anti-inflammatory M2 states with distinct physiological functions. This transition within the M1–M2 phenotypes decides the nature, duration and severity of an inflammatory response. Although there is a substantial understanding of the fate of these phenotypes, the underlying molecular mechanism of transition within the M1–M2 phenotypes is not well understood. We have investigated the role of neuronal nitric oxide synthase (NOS1)-mediated regulation of activator protein 1 (AP-1) transcription factor in macrophages as a critical effector of macrophage phenotypic change.

Materials and Methods

Raw 264.7 and THP1 macrophages were stimulated with LPS (250 ng/ml) to activate the inflammatory signaling pathway. We analyzed the effect of pharmacological NOS1 inhibitor: TRIM (1-(2- Trifluoromethylphenyl) imidazole) on LPS-induced inflammatory response in macrophages.

Results

We determined that NOS1-derived nitric oxide (NO) facilitate Fos and Jun interaction which induces IL-12 & IL-23 expression. Pharmacological inhibition of NOS1 inhibits ATF2 and Jun dimer. Switching of Fos and Jun dimer to ATF2 and Jun dimerization controls phenotype transition from IL-12high IL-23high IL-10low to IL-12low IL-23lowIL-10high phenotype, respectively.

Conclusion

These findings highlight a key role of the TLR4-NOS1-AP1 signaling axis in regulating macrophage polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010;30:245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ariel A, Maridonneau-Parini I, Rovere-Querini P, Levine JS, Mühl H. Macrophages in inflammation and its resolution. Inflammation 2012;3:324.

    Google Scholar 

  3. Jou I-M, Lin C-F, Tsai K-J, Wei S-J. Macrophage-mediated inflammatory disorders. Mediat Inflamm. 2013;2013:e316482.

    Article  Google Scholar 

  4. Bashir S, Sharma Y, Elahi A, Khan F. Macrophage polarization: the link between inflammation and related diseases. Inflamm Res. 2015;65:1–11.

    Article  Google Scholar 

  5. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs functional differentiation. Front Immunol. 2014. doi:10.3389/fimmu.2014.00514.

    PubMed  PubMed Central  Google Scholar 

  6. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000 Prime Rep. 2014. doi:10.12703/P6-13.

  7. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–96.

    Article  CAS  PubMed  Google Scholar 

  8. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu Y-C, Zou X-B, Chai Y-F, Yao Y-M. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10:520–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mills CD. M1 and M2 Macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32:463–88.

    Article  CAS  PubMed  Google Scholar 

  11. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage M1–M2 polarization balance. Front Immunol. 2014;5:614.

    PubMed  PubMed Central  Google Scholar 

  12. Günthner R, Anders H-J. Interferon-regulatory factors determine macrophage phenotype polarization. Mediators Inflamm. 2013;2013:731023. 

    Article  Google Scholar 

  13. Rauch I, Müller M, Decker T. The regulation of inflammation by interferons and their STATs. JAK-STAT 2013;2(1):e23820.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schreiber S, Rosenstiel P, Hampe J, Nikolaus S, Groessner B, Schottelius A, et al. Activation of signal transducer and activator of transcription (STAT) 1 in human chronic inflammatory bowel disease. Gut. 2002;51:379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tugal D, Liao X, Jain MK. Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol. 2013;33:1135–44.

    Article  CAS  PubMed  Google Scholar 

  16. Fujimoto M, Naka T. SOCS1, a negative regulator of cytokine signals and TLR responses, in human liver diseases. Gastroenterol Res Pract. 2010;2010:470468. doi:10.1155/2010/470468

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wilson HM. SOCS proteins in macrophage polarization and function. Front Immunol. 2014;5. doi:10.3389/fimmu.2014.00357.

  18. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.

    Article  CAS  PubMed  Google Scholar 

  19. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sabroe I, Parker L, Dower S, Whyte M. The role of TLR activation in inflammation. J Pathol. 2008;214:126–35.

    Article  Google Scholar 

  21. Siegemund S, Sauer K. Balancing pro- and anti-inflammatory TLR4 signaling. Nat Immunol. 2012;13:1031–3. 

    Article  CAS  PubMed  Google Scholar 

  22. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11:750–61. 

    Article  CAS  PubMed  Google Scholar 

  23. Lawrence T. The Nuclear factor NF-κB pathway in Inflammation. Cold Spring Harb Perspect Biol. 2009;1:6. doi:10.1101/cshperspect.a001651

    Article  Google Scholar 

  24. Eräsalo H, Laavola M, Hämäläinen M, Leppänen T, Nieminen R, Moilanen E. PI3K inhibitors LY294002 and IC87114 reduce inflammation in carrageenan-induced paw oedema and down-regulate inflammatory gene expression in activated macrophages. Basic Clin Pharmacol Toxicol. 2015;116:53–61.

    Article  PubMed  Google Scholar 

  25. Hawkins PT, Stephens LR. PI3K signalling in inflammation. Biochim Biophys Acta BBA - Mol Cell Biol Lipids. 2015;1851:882–97. 

    Article  CAS  Google Scholar 

  26. Arranz A, Doxaki C, Vergadi E, Torre YM de la, Vaporidi K, Lagoudaki ED, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci. 2012;109:9517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Couper KN, Blount DG, Riley EM. IL-10: The Master Regulator of Immunity to Infection. J Immunol. 2008;180:5771–7. 

    Article  CAS  PubMed  Google Scholar 

  28. Gong D, Shi W, Yi S, Chen H, Groffen J, Heisterkamp N. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13:31. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mantovani Alberto, Sica Antonio, Locati M. Macrophage Polarization Comes of Age. Immunity. 2005;23:344–6. 

    Article  Google Scholar 

  30. Baig MS, Zaichick SV, Mao M, de Abreu AL, Bakhshi FR, Hart PC, et al. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1. J Exp Med. 2015;212:1725–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaudhry H, Zhou J, Zhong Y, Ali MM, McGuire F, Nagarkatti PS, et al. Role of Cytokines as a Double-edged Sword in Sepsis. Vivo Athens Greece. 2013;27:669–84. 

    CAS  Google Scholar 

  32. Zhang J-M, An J. Cytokines, Inflammation and Pain. Int Anesthesiol Clin. 2007;45:27–37. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kobayashi Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J Leukoc Biol. 2010;88:1157–62.

    Article  CAS  PubMed  Google Scholar 

  34. Schulte W, Bernhagen J, Bucala R. Cytokines in Sepsis: Potent Immunoregulators and Potential Therapeutic Targets. Mediators Inflamm. 2013;2013:e165974.

    Article  Google Scholar 

  35. Kröncke K-D, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide synthase in human diseases. Clin Exp Immunol. 1998;113:147–56. 

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zamora R, Vodovotz Y, Billiar TR. Inducible nitric oxide synthase and inflammatory diseases. Mol Med. 2000;6:347–73. 

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramirez-Carrozzi V, Kerppola T. Asymmetric recognition of nonconsensus AP-1 sites by Fos-Jun and Jun-Jun influences transcriptional cooperativity with NFAT1. Mol Cell Biol. 2003;23:1737–49. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu T, Li YJ, Bian AH, Zuo HB, Zhu TW, Ji SX, et al. The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm. 2014;2014:950472. 

    Google Scholar 

  39. Zenz R, Eferl R, Scheinecker C, Redlich K, Smolen J, Schonthaler HB, et al. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res Ther. 2008;10:201. 

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang K, Wu Y, Xie H, Li M, Ming S, Li L, et al. Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production. Sci Rep. 2016;6:27326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene. 2001;20:2438–52.

    Article  CAS  PubMed  Google Scholar 

  42. Lopez-Bergami P, Lau E, Ronai Z. ’ev. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer. 2010;10:65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bogdan C. Of microbes, macrophages and nitric oxide. Behring Inst Mitt. 1997;58–72.

  44. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37.

    Article  PubMed  Google Scholar 

  45. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50.

    Article  CAS  PubMed  Google Scholar 

  46. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J Off Publ Fed Am Soc Exp Biol. 1992;6:3051–64.

    CAS  Google Scholar 

  47. Qu XW, Wang H, De Plaen IG, Rozenfeld RA, Hsueh W. Neuronal nitric oxide synthase (NOS) regulates the expression of inducible NOS in rat small intestine via modulation of nuclear factor kappa B. FASEB J Off Publ Fed Am Soc Exp Biol. 2001;15:439–46.

    CAS  Google Scholar 

  48. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22:231–7.

    Article  CAS  PubMed  Google Scholar 

  49. Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011;12:1035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Malyshev I, Malyshev Y. Current concept and update of the macrophage plasticity concept: intracellular mechanisms of reprogramming and M3 macrophage "switch" phenotype. Biomed Res Int. 2015;2015:341308.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nussler AK, Billiar TR. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993;54:171–8.

    CAS  PubMed  Google Scholar 

  52. Huang Z, Hoffmann FW, Fay JD, Hashimoto AC, Chapagain ML, Kaufusi PH, et al. Stimulation of unprimed macrophages with immune complexes triggers a low output of nitric oxide by calcium-dependent neuronal nitric-oxide synthase. J Biol Chem. 2012;287:4492–502.

    Article  CAS  PubMed  Google Scholar 

  53. Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci. 2004;117:5965–73.

    Article  CAS  PubMed  Google Scholar 

  54. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4:E131–6.

    Article  CAS  PubMed  Google Scholar 

  55. Young MR, Li JJ, Rincón M, Flavell RA, Sathyanarayana BK, Hunziker R, et al. Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc Natl Acad Sci U S A. 1999;96:9827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang A, Al-Kuhlani M, Johnston SC, Ojcius DM, Chou J, Dean D. Transcription factor complex AP-1 mediates inflammation initiated by Chlamydia pneumoniae infection. Cell Microbiol. 2013;15(5):779–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology (DBT), Government of India-sponsored Ramalingaswami Fellowship to MSB. The authors also gratefully acknowledge the Indian Institute of Technology Indore for providing facilities and other support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Saqib Baig.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the contents of this article.

Additional information

Responsible Editor: John Di Battista.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, M., Saqib, U., Naim, A. et al. The TLR4–NOS1–AP1 signaling axis regulates macrophage polarization. Inflamm. Res. 66, 323–334 (2017). https://doi.org/10.1007/s00011-016-1017-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-1017-z

Keywords

Navigation