Skip to main content
Log in

Immunobiotic Lactobacillus strains reduce small intestinal injury induced by intraepithelial lymphocytes after Toll-like receptor 3 activation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Intestinal intraepithelial lymphocytes (IELs) play critical roles in disrupting epithelial homeostasis after Toll-like receptor (TLR)-3 activation with genomic rotavirus dsRNA or the synthetic dsRNA analog poly(I:C). The capacity of immunobiotic Lactobacillus rhamnosus CRL1505 (Lr1505) or Lactobacillus plantarum CRL1506 (Lp1506) to beneficially modulate IELs response after TLR3 activation was investigated in vivo using a mice model.

Results

Intraperitoneal administration of poly(I:C) induced inflammatory-mediated intestinal tissue damage through the increase of inflammatory cells (CD3+NK1.1+, CD3+CD8αα+, CD8αα+NKG2D+) and pro-inflammatory mediators (TNF-α, IL-1β, IFN-γ, IL-15, RAE1, IL-8). Increased expression of intestinal TLR3, MDA5, and RIG-I was also observed after poly(I:C) challenge. Treatment with Lr1505 or Lp1506 prior to TLR3 activation significantly reduced the levels of TNF-α, IL-15, RAE1, and increased serum and intestinal IL-10. Moreover, CD3+NK1.1+, CD3+CD8αα+, and CD8αα+NKG2D+ cells were lower in lactobacilli-treated mice when compared to controls. The immunomodulatory capacities of lactobacilli allowed a significant reduction of intestinal tissue damage.

Conclusions

This work demonstrates the reduction of TLR3-mediated intestinal tissue injury by immunobiotic lactobacilli through the modulation of intraepithelial lymphocytes response. It is a step forward in the understanding of the cellular mechanisms involved in the antiviral capabilities of immunobiotic strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AST:

Aspartate aminotransferase

APC:

Antigen presenting cells

DC:

Dendritic cells

dsRNA:

Double-stranded RNA

IELs:

Intraepithelial lymphocytes

IECs:

Intestinal epithelial cells

IFN:

Interferon

IL-1:

Interleukin

LAB:

Lactic acid bacteria

LDH:

Lactate dehydrogenase

Lp1506:

Lactobacillus plantarum CRL1506

Lr1505:

Lactobacillus rhamnosus CRL1505

MAMPs:

Microbe-associated molecular patterns

RAE1:

Retinoic acid early inducible-1

RVs:

Rotavirus

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

PIE:

Porcine intestinal epithelial cells

PRRs:

Pattern recognition receptors

References

  1. Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination. Gastroenterology. 2009;136:1939–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12:136–41.

    Article  PubMed  Google Scholar 

  3. Broquet AH, Hirata Y, McAllister CS, Kagnoff MF. RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. J Immunol. 2011;186:1618–26.

    Article  CAS  PubMed  Google Scholar 

  4. Bron PA, van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol. 2011;10:66–78.

    PubMed  Google Scholar 

  5. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  6. Westendorf AM, Fleissner D, Hansen W, Buer J. T cells, dendritic cells and epithelial cells in intestinal homeostasis. Int J Med Microbiol. 2010;300:11–8.

    Article  CAS  PubMed  Google Scholar 

  7. Le Goffic R, Balloy V, Lagranderie M, Alexopoulou L, Escriou N, Flavell R, Chignard M, Si-Tahar M. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2006;2:e53.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rudd BD, Smit JJ, Flavell RA, Alexopoulou L, Schaller MA, Gruber A, Berlin AA, Lukacs NW. Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J Immunol. 2006;176:1937–42.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou R, Wei H, Sun R, Tian Z. Recognition of double-stranded RNA by TLR3 induces severe small intestinal injury in mice. J Immunol. 2007;178:4548–56.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou R, Wei H, Sun R, Zhang J, Tian Z. NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice. PNAS. 2007;104:7512–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stowell NC, Seideman J, Raymond HA, Smalley KA, Lamb RJ, Egenolf DD, Bugelski PJ, Murray LA, Marsters PA, Bunting RA, Flavell RA, Alexopoulou L, San Mateo LR, Griswold DE, Sarisky RT, Mbow ML, Das AM. Long-term activation of TLR3 by poly(I:C) induces inflammation and impairs lung function in mice. Respir Res. 2009;10:43.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aeffner F, Traylor ZP, Yu EN, Davis IC. Double-stranded RNA induces similar pulmonary dysfunction to respiratory syncytial virus in BALB/c mice. Am J Physiol Lung Cell Mol Physiol. 2011;301:L99–109.

    Article  CAS  PubMed  Google Scholar 

  13. Araya RE, Jury J, Bondar C, Verdu EF, Chirdo FG. Intraluminal administration of poly I: C causes an enteropathy that is exacerbated by administration of oral dietary antigen. PLoS One. 2014;9:e99236.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shires J, Theodoridis E, Hayday AC. Biological insights into TCRgammadelta + and TCRalphabeta + intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity. 2001;15:419–34.

    Article  CAS  PubMed  Google Scholar 

  15. FAO/WHO. Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. 2001.

  16. Villena J, Kitazawa H. Modulation of intestinal TLR4-inflammatory signaling pathways by probiotic microorganisms: lessons learned from Lactobacillus jensenii TL2937. Front Immunol. 2014;4:512.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sindhu KN, Sowmyanarayanan TV, Paul A, Babji S, Ajjampur SS, Priyadarshini S, Sarkar R, Balasubramanian KA, Wanke CA, Ward HD, Kang G. Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2014;58:1107–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wen K, Tin C, Wang H, Yang X, Li G, Giri-Rachman E, Kocher J, Bui T, Clark-Deener S, Yuan L. Probiotic Lactobacillus rhamnosus GG enhanced Th1 cellular immunity but did not affect antibody responses in a human gut microbiota transplanted neonatal gnotobiotic pig model. PLoS One. 2014;9:e94504.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kandasamy S, Chattha KS, Vlasova AN, Rajashekara G, Saif LJ. Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut Microbes. 2014;5:639–51.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Villena J, Chiba E, Vizoso-Pinto MG, Tomosada Y, Takahashi T, Ishizuka T, Aso H, Salva S, Alvarez S, Kitazawa H. Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells. BMC Microbiol. 2014;14:126.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Villena J, Chiba E, Tomosada Y, Salva S, Marranzino G, Kitazawa H, Alvarez S. Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C). BMC Immunol. 2012;13:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salva S, Villena J, Alvarez S. Immunomodulatory activity of Lactobacillus rhamnosus strains isolated from goat milk: Impact on intestinal and respiratory infections. Int J Food Microbiol. 2010;141:82–9.

    Article  CAS  PubMed  Google Scholar 

  23. Salva S, Nunez M, Villena J, Ramon A, Font G, Alvarez S. Development of a fermented goats’ milk containing Lactobacillus rhamnosus: in vivo study of health benefits. J Sci Food Agric. 2011;91:2355–62.

    Article  CAS  PubMed  Google Scholar 

  24. Dacie J, Lewis S. Dacie y Lewis. Hematología Práctica, 10a ed: Elsevier España. 2008.

  25. Marranzino G, Villena J, Salva S, Alvarez S. Stimulation of macrophages by immunobiotic Lactobacillus strains: influence beyond the intestinal tract. Microbiol Immunol. 2012;56:771–81.

    Article  CAS  PubMed  Google Scholar 

  26. Ohta N, Hiroi T, Kweon MN, Kinoshita N, Jang MH, Mashimo T, Miyazaki J, Kiyono H. IL-15-dependent activation-induced cell death-resistant Th1 type CD8 alpha beta+NK1.1+T cells for the development of small intestinal inflammation. J Immunol. 2002;169:460–8.

    Article  CAS  PubMed  Google Scholar 

  27. Negishi H, Osawa T, Ogami K, Ouyang X, Sakaguchi S, Koshiba R, Yanai H, Seko Y, Shitara H, Bishop K, Yonekawa H, Tamura T, Kaisho T, Taya C, Taniguchi T, Honda K. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. PNAS. 2008;105:20446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10:1366–73.

    Article  CAS  PubMed  Google Scholar 

  29. Rudd BD, Burstein E, Duckett CS, Li X, Lukacs NW. Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J Virol. 2005;79:3350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Groskreutz DJ, Monick MM, Powers LS, Yarovinsky TO, Look DC, Hunninghake GW. Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells. J Immunol. 2006;176:1733–40.

    Article  CAS  PubMed  Google Scholar 

  31. Hosoya S, Villena J, Shimazu T, Tohno M, Fujie H, Chiba E, Shimosato T, Aso H, Suda Y, Kawai Y, Saito T, Alvarez S, Ikegami S, Itoh H, Kitazawa H. Immunobiotic lactic acid bacteria beneficially regulate immune response triggered by poly(I:C) in porcine intestinal epithelial cells. Vet Res. 2011;42:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Villena J, Salva S, Núñez M, Corzo J, Tolaba R, Faedda J, Font G, Alvarez S. Probiotics for everyone! The novel immunobiotic Lactobacillus rhamnosus CRL1505 and the beginning of Social Probiotic Programs in Argentina. Int J Biotechnol Wellness Ind. 2012;1:189–98.

    Google Scholar 

  33. Kinoshita N, Hiroi T, Ohta N, Fukuyama S, Park EJ, Kiyono H. Autocrine IL-15 mediates intestinal epithelial cell death via the activation of neighboring intraepithelial NK cells. J Immunol. 2002;169:6187–92.

    Article  CAS  PubMed  Google Scholar 

  34. Ebert EC. Interleukin 15 is a potent stimulant of intraepithelial lymphocytes. Gastroenterology. 1998;115:1439–45.

    Article  CAS  PubMed  Google Scholar 

  35. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3:781–90.

    Article  CAS  PubMed  Google Scholar 

  36. Cerwenka A, Bakker AB, McClanahan T, Wagner J, Wu J, Phillips JH, Lanier LL. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity. 2000;12:721–7.

    Article  CAS  PubMed  Google Scholar 

  37. Kawaguchi M, Nanno M, Umesaki Y, Matsumoto S, Okada Y, Cai Z, Shimamura T, Matsuoka Y, Ohwaki M, Ishikawa H. Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by T cells expressing gamma delta T-cell antigen receptors. PNAS. 1993;90:8591–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suzuki H, Jeong KI, Itoh K, Doi K. Regional variations in the distributions of small intestinal intraepithelial lymphocytes in germ-free and specific pathogen-free mice. Exp Mol Pathol. 2002;72:230–5.

    Article  CAS  PubMed  Google Scholar 

  39. Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X, Benjamin JL, Ruhn KA, Hou B, DeFranco AL, Yarovinsky F, Hooper LV. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci USA. 2011;108:8743–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang W, Wang X, Zeng B, Liu L, Tardivel A, Wei H, Han J, MacDonald HR, Tschopp J, Tian Z, Zhou R. Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J Exp Med. 2013;210:2465–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hansen CH, Holm TL, Krych L, Andresen L, Nielsen DS, Rune I, Hansen AK, Skov S. Gut microbiota regulates NKG2D ligand expression on intestinal epithelial cells. Eur J Immunol. 2013;43:447–57.

    Article  CAS  PubMed  Google Scholar 

  42. Serrano AE, Menares-Castillo E, Garrido-Tapia M, Ribeiro CH, Hernandez CJ, Mendoza-Naranjo A, Gatica-Andrades M, Valenzuela-Diaz R, Zuniga R, Lopez MN, Salazar-Onfray F, Aguillon JC, Molina MC. Interleukin 10 decreases MICA expression on melanoma cell surface. Immunol Cell Biol. 2011;89:447–57.

    Article  CAS  PubMed  Google Scholar 

  43. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a ANPCyT—FONCyT Grant PICT-2013 (No. 3219) to Dr. J. Villena and Grant-in-Aid for Scientific Research (B)(2) (No. 24380146, 16H05019) and Challenging Exploratory Research (No. 23658216, 26660216, 16K15028) from the Japan Society for the Promotion of Science (JSPS) to Dr. H. Kitazawa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haruki Kitazawa or Julio Villena.

Ethics declarations

Ethics

All experiments were carried out in compliance with the Guide for Care and Use of Laboratory Animals and approved by the Ethical Committee of Animal Care at CERELA, Argentina (Protocol Number BIOT-CRL/14).

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: John Di Battista.

A. Tada and H. Zelaya contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tada, A., Zelaya, H., Clua, P. et al. Immunobiotic Lactobacillus strains reduce small intestinal injury induced by intraepithelial lymphocytes after Toll-like receptor 3 activation. Inflamm. Res. 65, 771–783 (2016). https://doi.org/10.1007/s00011-016-0957-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0957-7

Keywords

Navigation