VBP15, a novel dissociative steroid compound, reduces NFκB-induced expression of inflammatory cytokines in vitro and symptoms of murine trinitrobenzene sulfonic acid-induced colitis


Objective and design

The goal of this study was to assess the capacity of VBP15, a dissociative steroidal compound, to reduce pro-inflammatory cytokine expression in vitro, to reduce symptoms of colitis in the trinitrobenzene sulfonic acid-induced murine model, and to assess the effect of VBP15 on growth stunting in juvenile mice.


In vitro studies were performed in primary human intestinal epithelial cells. Colitis was induced in mice by administering trinitrobenzene sulfonic acid. Growth stunting studies were performed in wild type outbred mice.


Cells were treated with VBP15 or prednisolone (10 μM) for 24 h. Mice were subjected to 3 days of VBP15 (30 mg/kg) or prednisolone (30 mg/kg) in the colitis study. In the growth stunting study, mice were subjected to VBP15 (10, 30, 45 mg/kg) or prednisolone (10 mg/kg) for 5 weeks.


Cytokines were measured by PCR and via Luminex. Colitis symptoms were evaluated by assessing weight loss, intestinal blood, and stool consistency. Growth stunting was assessed using an electronic caliper.


VBP15 significantly reduced the in vitro production of CCL5 (p < 0.001) IL-6 (p < 0.001), IL-8 (p < 0.05) and reduced colitis symptoms (p < 0.05). VBP15 caused less growth stunting than prednisolone (p < 0.001) in juvenile mice.


VBP15 may reduce symptoms of IBD, while decreasing or avoiding detrimental side effects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Ponder A, Long MD. A clinical review of recent findings in the epidemiology of inflammatory bowel disease. Clin Epidemiol. 2013;5:237–47.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Rutgeerts PJ. Review article: the limitations of corticosteroid therapy in Crohn’s disease. Aliment Pharmacol Ther. 2001;15:1515–25.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Moeeni V, Day AS. Impact of inflammatory bowel disease upon growth in children and adolescents. ISRN Pediatr. 2011;2011:365712.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Mrakotsky C, Forbes PW, Bernstein JH, Grand RJ, Bousvaros A, Szigethy E, Waber DP. Acute cognitive and behavioral effects of systemic corticosteroids in children treated for inflammatory bowel disease. J Int Neuropsychol Soc. 2013;19:96–109.

    Article  PubMed  Google Scholar 

  5. 5.

    Faubion W, Loftus EV, Harmsen WS, Zinsmeister AR, Sandborn WJ. The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology. 2001;121:255–60.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, Sands BE, Hanauer SB, Targan S, Rutgeerts P, Ghosh S, de Villiers WJ, Panaccione R, Greenberg G, Schreiber S, Lichtiger S, Feagan BG. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367:1519–28.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol. 2013;380:41–54.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Baudy AR, Saxena N, Gordish H, Hoffman EP, Nagaraju K. A robust in vitro screening assay to identify NF-kappaB inhibitors for inflammatory muscle diseases. Int Immunopharmacol. 2009;9:1209–14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Truss M, Beato M. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev. 1993;14:459–79.

    CAS  PubMed  Google Scholar 

  10. 10.

    van der Burg B, Liden J, Okret S, Delaunay F, Wissink S, van der Saag PT, Gustafsson JA. Nuclear factor-kappa B repression in antiinflammation and immunosuppression by glucocorticoids. Trends Endocrinol Metab. 1997;8:152–7.

    Article  PubMed  Google Scholar 

  11. 11.

    Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, Schütz G. DNA binding of the glucocorticoid receptor is not essential for survival. Cell. 1998;93:531–41.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Reichardt HM, Tuckermann JP, Göttlicher M, Vujic M, Weih F, Angel P, Herrlich P, Schütz G. Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J. 2001;20:7168–73.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J Intern Med. 2008;263:591–6.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Neurath MF, Pettersson S. Meyer zum Büschenfelde KH. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med. 1996;2:998–1004.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Tang Y, Clayburgh DR, Mittal N, Goretsky T, Dirisina R, Zhang Z, Kron M, Ivancic D, Katzman RB, Grimm G, Lee G, Fryer J, Nusrat A, Turner JR, Barrett TA. Epithelial NF-kappaB enhances transmucosal fluid movement by altering tight junction protein composition after T cell activation. Am J Pathol. 2010;176:158–67.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995;270:286–90.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Thiele K, Bierhaus A, Autschbach F, Hofmann M, Stremmel W, Thiele H, Ziegler R, Nawroth PP. Cell specific effects of glucocorticoid treatment on the NF κBp65/IκBα system in patients with Crohn’s disease. Gut. 1999;45:693–704.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    De Bosscher K, Schmitz ML, Vanden Berghe W, Plaisance S, Fiers W. Haegeman. Glucocorticoid-mediated repression of nuclear factor-κB-dependent transcription involves direct interference with transactivation. Proc Natl Acad Sci USA. 1997;94:13504–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Reeves EK, Hoffman EP, Nagaraju K, Damsker JM, McCall JM. VBP15: preclinical characterization of a novel anti-inflammatory delta 9,11 steroid. Bioorg Med Chem. 2013;21:2241–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Damsker JM, Dillingham BC, Rose MC, Balsley MA, Heier CR, Watson AM, Stemmy EJ, Jurjus RA, Huynh T, Tatem K, Uaesoontrachoon K, Berry DM, Benton AS, Freishtat RJ, Hoffman EP, McCall JM, Gordish-Dressman H, Constant SL, Reeves EK, Nagaraju K. VBP15, a glucocorticoid analogue, is effective at reducing allergic lung inflammation in mice. PLoS One. 2013;8:e63871.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, Sali A, Miller BK, Phadke A, Scheffer L, Quinn J, Tatem K, Jordan S, Dadgar S, Rodriguez OC, Albanese C, Calhoun M, Gordish-Dressman H, Jaiswal JK, Connor EM, McCall JM, Hoffman EP, Reeves EK, Nagaraju K. VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med. 2013;5:1569–85.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Dillingham BC, Knoblach SM, Many GM, Harmon BT, Mullen AM, Heier CR, Bello L, McCall JM, Hoffman EP, Connor EM, Nagaraju K, Reeves EK, Damsker JM. VBP15, a novel anti-inflammatory, is effective at reducing the severity of murine experimental autoimmune encephalomyelitis. Cell Mol Neurobiol. 2015;35:377–87.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Reuter KC, Grunwitz CR, Kaminski BM, Steinhilber D, Radeke HH, Stein J. Selective glucocorticoid receptor agonists for the treatment of inflammatory bowel disease: studies in mice with acute trinitrobenzene sulfonic acid colitis. J Pharmacol Exp Ther. 2012;341:68–80.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Scheiffele F, Fuss IV. Induction of TNBS colitis in mice. Curr Protoc Immunol. 2002;Chapter 15:Unit 15.19. doi:10.1002/0471142735.im1519s49.

  25. 25.

    Kuhn KA, Manieri NA, Liu TC, Stappenbeck TS. IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS One. 2014;9(12):e114195.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kucharzik T, Hudson JT 3rd, Lügering A, Abbas JA, Bettini M, Lake JG, Evans ME, Ziegler TR, Merlin D, Madara JL, Williams IR. Acute induction of human IL-8 production by intestinal epithelium triggers neutrophil infiltration without mucosal injury. Gut. 2005;54(11):1565–72.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Yang SK, Choi MS, Kim OH, Myung SJ, Jung HY, Hong WS, Kim JH, Min YI. The increased expression of an array of C-X-C and C-C chemokines in the colonic mucosa of patients with ulcerative colitis: regulation by corticosteroids. Am J Gastroenterol. 2002;97(1):126–32.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Lillard JW Jr, Boyaka PN, Taub DD, McGhee JR. RANTES potentiates antigen-specific mucosal immune responses. J Immunol. 2001;166(1):162–9.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    McCormack G, Moriarty D, O’Donoghue DP, McCormick PA, Sheahan K, Baird AW. Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm Res. 2001;50:491–5.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Kunsch C, Rosen CA. NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol. 1993;13:6137–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990;10:2327–34.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    DeBosscher KG, Haegeman G, Elewaut D. Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol. 2010;10:497–504.

    CAS  Article  Google Scholar 

  33. 33.

    Adcock IM, Barnes PJ. Ligand-induced differentiation of glucocorticoid receptor (GR) transrepression and transactivation. Biochem Soc Trans. 1996;24:267S.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Bijsmans IT, Guercini C, Ramos Pittol JM, Omta W, Milona A, Lelieveld D, Egan DA, Pellicciari R, Gioiello A, van Mil SW. The glucocorticoid mometasone furoate is a novel FXR ligand that decreases inflammatory but not metabolic gene expression. Sci Rep. 2015;5:14086.

  35. 35.

    Robertson S, Allie-Reid F, Vanden Berghe W, Visser K, Binder A, Africander D, Vismer M, De Bosscher K, Hapgood J, Haegeman G, Louw A. Abrogration of glucocorticoid receptor dimerization correlates with dissociated glucocorticoid behavior of compound a. J Biol Chem. 2010;12:8061–8075.

Download references

Author information



Corresponding author

Correspondence to Jesse M. Damsker.

Ethics declarations

Conflict of interest

Dr. Jesse Damsker and Dr. John McCall are employed by ReveraGen BioPharma Inc. and have stock options and founder shares, respectively.

Financial support

Supported by ReveraGen BioPharma Inc. Sheikh Zayed Institute for Pediatric Surgical Innovation, NIH Grant (1R41DK102235-01).

Additional information

J. M. Damsker and L. S. Conklin contributed equally to this manuscript.

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Damsker, J.M., Conklin, L.S., Sadri, S. et al. VBP15, a novel dissociative steroid compound, reduces NFκB-induced expression of inflammatory cytokines in vitro and symptoms of murine trinitrobenzene sulfonic acid-induced colitis. Inflamm. Res. 65, 737–743 (2016). https://doi.org/10.1007/s00011-016-0956-8

Download citation


  • Inflammation
  • Autoimmunity
  • Glucocorticoids
  • Inflammatory bowel disease