Skip to main content
Log in

Rac1 regulates bacterial toxin-induced thrombin generation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Systemic inflammatory response syndrome is associated with severe coagulopathy. The purpose of this study was to examine thrombin generation in systemic inflammation triggered by the endotoxin lipopolysaccharide (LPS) and the exotoxin streptococcal M1 protein.

Methods

Thrombin generation, lung histology and myeloperoxidase (MPO) activity were determined 6 and 24 h after induction of systemic inflammation. Male C57BL/6 mice received the Rac1 inhibitor NSC23766 prior to challenge with bacterial toxins.

Results

LPS and M1 protein challenge increased neutrophil infiltration and caused damage in the lung. Time to peak thrombin formation was increased and peak and total generation of thrombin were decreased in plasma from LPS- and M1 protein-treated mice. Coincubation of samples from mice exposed to bacterial toxins with platelet poor plasma from healthy mice completely reversed the inhibitory effect of LPS and M1 protein on thrombin generation, suggesting that bacterial toxins decreased levels of plasma factors explaining the reduction of thrombin generating capacity of plasma from septic animals. NSC23766 treatment not only decreased LPS- and M1 protein-induced neutrophil accumulation as well as levels of interleukin-6 and CXCL2 in the lung, but also abolished bacterial toxin-induced changes in thrombin generation. For example, NSC23766 increased peak formation by 57 % and total thrombin generation by 48 % in LPS-treated animals at 6 h.

Conclusions

Taken together, our novel findings show that bacterial toxins increase thrombin generation via consumption of plasma factors and that Rac1 signaling plays an important role in thrombin generation in response to bacterial toxins. Thus, targeting Rac1 activity might be a useful way not only to ameliorate pulmonary inflammation, but also inhibit pathological changes in coagulation in bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–54.

    Article  PubMed  Google Scholar 

  2. Bochud PY, Glauser MP, Calandra T. International Sepsis F. Antibiotics in sepsis. Intensive Care Med. 2001;27(Suppl 1):S33–48.

    Article  PubMed  Google Scholar 

  3. Wang JE, Dahle MK, McDonald M, Foster SJ, Aasen AO, Thiemermann C. Peptidoglycan and lipoteichoic acid in gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergism. Shock. 2003;20:402–14.

    Article  CAS  PubMed  Google Scholar 

  4. Bouza E, Finch R. Infections caused by Gram-positive bacteria: situation and challenges of treatment. Clin Microbiol Infect. 2001;7(Suppl 4):3.

    Google Scholar 

  5. Zhang S, Rahman M, Zhang S, Wang Y, Herwald H, Jeppsson B, et al. p38 Mitogen-activated protein kinase signaling regulates streptococcal M1 protein-induced neutrophil activation and lung injury. J Leukoc Biol. 2012;91:137–45.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang S, Rahman M, Zhang S, Jeppsson B, Herwald H, Thorlacius H. Streptococcal m1 protein triggers farnesyltransferase-dependent formation of CXC chemokines in alveolar macrophages and neutrophil infiltration of the lungs. Infect Immun. 2012;80:3952–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spero JA, Lewis JH, Hasiba U. Disseminated intravascular coagulation. Findings in 346 patients. Thromb Haemost. 1980;43:28–33.

    CAS  PubMed  Google Scholar 

  8. Mann KG. Thrombin formation. Chest. 2003;124:4S–10S.

    Article  CAS  PubMed  Google Scholar 

  9. Shaw AD, Vail GM, Haney DJ, Xie J, Williams MD. Severe protein C deficiency is associated with organ dysfunction in patients with severe sepsis. J Crit Care. 2011;26:539–45.

    Article  CAS  PubMed  Google Scholar 

  10. Tripodi A, Anstee QM, Sogaard KK, Primignani M, Valla DC. Hypercoagulability in cirrhosis: causes and consequences. J Thromb Haemost. 2011;9:1713–23.

    Article  CAS  PubMed  Google Scholar 

  11. Kashuk JL, Moore EE, Wohlauer M, Johnson JL, Pezold M, Lawrence J, et al. Initial experiences with point-of-care rapid thrombelastography for management of life-threatening postinjury coagulopathy. Transfusion. 2012;52:23–33.

    Article  PubMed  Google Scholar 

  12. Kim JM, Oh YK, Lee JH, Im DY, Kim YJ, Youn J, et al. Induction of proinflammatory mediators requires activation of the TRAF, NIK, IKK and NF-kappaB signal transduction pathway in astrocytes infected with Escherichia coli. Clin Exp Immunol. 2005;140:450–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mouawad F, Tsui H, Takano T. Role of Rho-GTPases and their regulatory proteins in glomerular podocyte function. Can J Physiol Pharmacol. 2013;91:773–82.

    Article  CAS  PubMed  Google Scholar 

  14. Hwaiz R, Hasan Z, Rahman M, Zhang S, Palani K, Syk I, et al. Rac1 signaling regulates sepsis-induced pathologic inflammation in the lung via attenuation of Mac-1 expression and CXC chemokine formation. J Surg Res. 2013;183:798–807.

    Article  CAS  PubMed  Google Scholar 

  15. Binker MG, Binker-Cosen AA, Gaisano HY, Cosen-Binker LI. Inhibition of Rac1 decreases the severity of pancreatitis and pancreatitis-associated lung injury in mice. Exp Physiol. 2008;93:1091–103.

    Article  CAS  PubMed  Google Scholar 

  16. Harada N, Iimuro Y, Nitta T, Yoshida M, Uchinami H, Nishio T, et al. Inactivation of the small GTPase Rac1 protects the liver from ischemia/reperfusion injury in the rat. Surgery. 2003;134:480–91.

    Article  PubMed  Google Scholar 

  17. Yao HY, Chen L, Xu C, Wang J, Chen J, Xie QM, et al. Inhibition of Rac activity alleviates lipopolysaccharide-induced acute pulmonary injury in mice. Biochim Biophys Acta. 2011;1810:666–74.

    Article  CAS  PubMed  Google Scholar 

  18. Luo L, Zhang S, Wang Y, Rahman M, Syk I, Zhang E, et al. Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol. 2014;307:L586–96.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Roller J, Slotta JE, Zhang S, Luo L, Rahman M, et al. Distinct patterns of leukocyte recruitment in the pulmonary microvasculature in response to local and systemic inflammation. Am J Physiol Lung Cell Mol Physiol. 2013;304:L298–305.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Braun OO, Zhang S, Luo L, Norstrom E, Thorlacius H. Dynamic changes in thrombin generation in abdominal sepsis in mice. Shock. 2014;42:343–9.

    Article  CAS  PubMed  Google Scholar 

  21. Levi M, Schultz M, van der Poll T. Sepsis and thrombosis. Semi Thromb Hemost. 2013;39:559–66.

    Article  CAS  Google Scholar 

  22. Picoli-Quaino SK, Alves BE, Faiotto VB, Montalvao SA, De Souza CA, Annichino-Bizzacchi JM, et al. Impairment of thrombin generation in the early phases of the host response of sepsis. J Crit Care. 2014;29:31–6.

    Article  CAS  PubMed  Google Scholar 

  23. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709.

    Article  CAS  PubMed  Google Scholar 

  24. Abraham E, Reinhart K, Opal S, Demeyer I, Doig C, Rodriguez AL, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA. 2003;290:238–47.

    Article  CAS  PubMed  Google Scholar 

  25. Hemker HC, Giesen P, AlDieri R, Regnault V, de Smed E, Wagenvoord R, et al. The calibrated automated thrombogram (CAT): a universal routine test for hyper- and hypocoagulability. Pathophysiol Haemost Thromb. 2002;32:249–53.

    Article  CAS  PubMed  Google Scholar 

  26. Hemker HC, Giesen P, Al Dieri R, Regnault V, de Smedt E, Wagenvoord R, et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb. 2003;33:4–15.

    Article  CAS  PubMed  Google Scholar 

  27. Hasan Z, Palani K, Rahman M, Zhang S, Syk I, Jeppsson B, et al. Rho-kinase signaling regulates pulmonary infiltration of neutrophils in abdominal sepsis via attenuation of CXC chemokine formation and Mac-1 expression on neutrophils. Shock. 2012;37:282–8.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol. 2009;182:7997–8004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stefanini L, Boulaftali Y, Ouellette TD, Holinstat M, Desire L, Leblond B, et al. Rap1-Rac1 circuits potentiate platelet activation. Arterioscler Thromb Vasc Biol. 2012;32:434–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCarty OJ, Larson MK, Auger JM, Kalia N, Atkinson BT, Pearce AC, et al. Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J Biol Chem. 2005;280:39474–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aleman MM, Gardiner C, Harrison P, Wolberg AS. Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J Thromb Haemost. 2011;9:2251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118:1952–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pastuszczak M, Kotlarz A, Mostowik M, Zalewski J, Zmudka K, Undas A. Prior simvastatin treatment is associated with reduced thrombin generation and platelet activation in patients with acute ST-segment elevation myocardial infarction. Thromb Res. 2010;125:382–6.

    Article  CAS  PubMed  Google Scholar 

  34. Sanguigni V, Pignatelli P, Lenti L, Ferro D, Bellia A, Carnevale R, et al. Short-term treatment with atorvastatin reduces platelet CD40 ligand and thrombin generation in hypercholesterolemic patients. Circulation. 2005;111:412–9.

    Article  CAS  PubMed  Google Scholar 

  35. Maddala RL, Reddy VN, Rao PV. Lovastatin-induced cytoskeletal reorganization in lens epithelial cells: role of Rho GTPases. Invest Ophthalmol Vis Sci. 2001;42:2610–5.

    CAS  PubMed  Google Scholar 

  36. Liao JK. Effects of statins on 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition beyond low-density lipoprotein cholesterol. Am J Cardiol. 2005;96:24F–33F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aslan JE, Baker SM, Loren CP, Haley KM, Itakura A, Pang J, et al. The PAK system links Rho GTPase signaling to thrombin-mediated platelet activation. Am J Physiol Cell Physiol. 2013;305:C519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gadepalli R, Kotla S, Heckle MR, Verma SK, Singh NK, Rao GN. Novel role for p21-activated kinase 2 in thrombin-induced monocyte migration. J Biol Chem. 2013;288:30815–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swedish Medical Research Council (2012-3685), Yongzhi Wang is supported by a Grant from China Scholarship Council (2010631095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Thorlacius.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hwaiz, R., Luo, L. et al. Rac1 regulates bacterial toxin-induced thrombin generation. Inflamm. Res. 65, 405–413 (2016). https://doi.org/10.1007/s00011-016-0924-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0924-3

Keywords

Navigation