Skip to main content
Log in

Proteomic analysis of mouse choroid plexus cell line ECPC-4 treated with lipid A

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

Choroid plexus (CP) epithelial cells have multiple functions in the cerebral ventricles, including cerebrospinal fluid (CSF) production and forming part of the blood–CSF barrier. They are also responsible for producing inflammatory mediators involved in meningitis. The present study aimed to elucidate the functions of the CP epithelial cells during CNS inflammation.

Materials and methods

We analyzed the proteome and phosphoproteome in lipid A-treated ECPC-4 mouse CP cells by gel electrophoresis and mass spectrometry.

Results

Levels of 10 proteins and seven phosphoproteins were significantly altered by lipid A in time-dependent manners, including V-type proton ATPase subunit B (ATP6V), protein 40 kD, elongation factor-1δ, coatomer subunit ε (COPE), vimentin (isoform CRA a), purine nucleoside phosphorylase, eukaryotic initiation factor-4F splicing variant, put. β-actin, peroxiredoxin-6 isoform 1, and immunoglobulin heavy chain variable region. These proteins could be classified as having cytoskeleton/intermediate filament, protein-folding, signal-transduction, cell-growth, metabolism, and redox-regulation functions. The identified phosphoproteins were HSP 84, γ-actin, HSP 70 cognate, vimentin, tubulin β-4B chain, protein disulfide-isomerase A6 precursor, and heterogenous nuclear ribonucleoprotein, which could be classified as having cytoskeleton/intermediate filament, protein-folding, and metabolism functions.

Conclusions

These results indicate that lipid A can change the levels of proteins and phosphoproteins in ECPC-4 cells, suggesting that the identified proteins and phosphoproteins may play important roles in inflammation of the CP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chodobski A, Szmydynger-Chodobska J. Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech. 2001;52:65–82.

    Article  CAS  PubMed  Google Scholar 

  3. Engelhardt B, Sorokin L. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009;31:497–511.

    Article  PubMed  Google Scholar 

  4. Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol. 2000;59:561–74.

    Article  CAS  PubMed  Google Scholar 

  5. Schwerk C, Tenenbaum T, Kim KS, Schroten H. The choroid plexus—a multi-role player during infectious diseases of the CNS. Front Cell Neurosci. 2015;9:80.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Steffen BJ, Breier G, Butcher EC, Schulz M, Engelhardt B. ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Pathol. 1996;148:1819–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Engelhardt B, Wolburg-Buchholz K, Wolburg H. Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech. 2001;52:112–29.

    Article  CAS  PubMed  Google Scholar 

  8. de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD. The blood–brain barrier in neuroinflammatory diseases. Pharmacol Rev. 1997;49:143–55.

    PubMed  Google Scholar 

  9. Schwerk C, Adam R, Borkowski J, Schneider H, Klenk M, Zink S, et al. In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines. Microbes Infect. 2011;13:953–62.

    Article  CAS  PubMed  Google Scholar 

  10. Takano M, Satoh C, Kunimatsu N, Otani M, Hamada-Kanazawa M, Miyake M, et al. Lipopolysaccharide activates the kallikrein-kinin system in mouse choroid plexus cell line ECPC4. Neurosci Lett. 2008;434:310–4.

    Article  CAS  PubMed  Google Scholar 

  11. Takano M, Uramoto M, Otani M, Matsuura K, Sano K, Matsuyama S. Secretomic analysis of mouse choroid plexus cell line ECPC-4 using two-dimensional gel electrophoresis coupled to mass spectrometry. J Proteomics Bioinform. 2014;7:347–52.

    Article  Google Scholar 

  12. Cohen P. The TLR and IL-1 signalling network at a glance. J Cell Sci. 2014;127:2383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li X, Jiang S, Tapping RI. Toll-like receptor signaling in cell proliferation and survival. Cytokine. 2010;49:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Otani M, Taniguchi T, Sakai A, Seta J, Kadoyama K, Nakamura-Hirota T, et al. Phosphoproteome profiling using a fluorescent phosphosensor dye in two-dimensional polyacrylamide gel electrophoresis. Appl Biochem Biotechnol. 2011;164:804–18.

    Article  CAS  PubMed  Google Scholar 

  15. Takano M, Maekura K, Otani M, Sano K, Nakamura-Hirota T, Tokuyama S, et al. Proteomic analysis of the brain tissues from a transgenic mouse model of amyloid beta oligomers. Neurochem Int. 2012;61:347–55.

    Article  CAS  PubMed  Google Scholar 

  16. Clague MJ, Urbe S. Ubiquitin: same molecule, different degradation pathways. Cell. 2010;143:682–5.

    Article  CAS  PubMed  Google Scholar 

  17. Nicola PA, Taylor CJ, Wang S, Barrand MA, Hladky SB. Transport activities involved in intracellular pH recovery following acid and alkali challenges in rat brain microvascular endothelial cells. Pflugers Arch. 2008;456:801–12.

    Article  CAS  PubMed  Google Scholar 

  18. Nanda A, Gukovskaya A, Tseng J, Grinstein S. Activation of vacuolar-type proton pumps by protein kinase C. Role in neutrophil pH regulation. J Biol Chem. 1992;267:22740–6.

    CAS  PubMed  Google Scholar 

  19. Kimata Y, Higashio H, Kohno K. Impaired proteasome function rescues thermosensitivity of yeast cells lacking the coatomer subunit epsilon-COP. J Biol Chem. 2000;275:10655–60.

    Article  CAS  PubMed  Google Scholar 

  20. Mulner-Lorillon O, Minella O, Cormier P, Capony JP, Cavadore JC, Morales J, et al. Elongation factor EF-1 delta, a new target for maturation-promoting factor in Xenopus oocytes. J Biol Chem. 1994;269:20201–7.

    CAS  PubMed  Google Scholar 

  21. Richter-Cook NJ, Dever TE, Hensold JO, Merrick WC. Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. J Biol Chem. 1998;273:7579–87.

    Article  CAS  PubMed  Google Scholar 

  22. Thouvenot E, Urbach S, Dantec C, Poncet J, Seveno M, Demettre E, et al. Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid. J Proteome Res. 2008;7:4409–21.

    Article  CAS  PubMed  Google Scholar 

  23. Ray S, Fanti JA, Macedo DP, Larsen M. LIM kinase regulation of cytoskeletal dynamics is required for salivary gland branching morphogenesis. Mol Biol Cell. 2014;25:2393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moore SA, Oglesbee MJ. Involvement of the choroid plexus in the inflammatory response after acute spinal cord injury in dogs: an immunohistochemical study. Vet Immunol Immunopathol. 2012;148:348–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giffard RG, Xu L, Zhao H, Carrico W, Ouyang Y, Qiao Y, et al. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol. 2004;207:3213–20.

    Article  CAS  PubMed  Google Scholar 

  26. Lu TS, Chen HW, Huang MH, Wang SJ, Yang RC. Heat shock treatment protects osmotic stress-induced dysfunction of the blood-brain barrier through preservation of tight junction proteins. Cell Stress Chaperones. 2004;9:369–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zugel U, Kaufmann SH. Immune response against heat shock proteins in infectious diseases. Immunobiology. 1999;201:22–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Smoking Research Foundation, Kobe Gakuin University for Collaborative Research A, and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 18023033, 21500352, 21390271, 20023027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaoki Takano.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takano, M., Otani, M., Kaji, T. et al. Proteomic analysis of mouse choroid plexus cell line ECPC-4 treated with lipid A. Inflamm. Res. 65, 295–302 (2016). https://doi.org/10.1007/s00011-016-0916-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0916-3

Keywords

Navigation