Skip to main content

Advertisement

Log in

Novel anti-inflammatory agent 3-[(dodecylthiocarbonyl)-methyl]-glutarimide ameliorates murine models of inflammatory bowel disease

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

To examine the effect of 3-[(dodecylthiocarbonyl)-methyl]-glutarimide (DTCM-G), a novel anti-inflammatory agent that inhibits lipopolysaccharide (LPS) activation of RAW264.7 macrophages, on murine models of colitis and RAW264.7 cells.

Materials and methods

Colitis was induced by rectally infusing trinitrobenzenesulfonic acid (TNBS) (1.5 mg in 50 % ethanol) in BALB/c mice or orally administering 3 % dextran sulfate sodium (DSS) for 5 days in C57BL/6 mice. The severity of colitis was assessed after intraperitoneally injecting DTCM-G (40 mg/kg). The anti-inflammatory properties of DTCM-G and its mechanisms were investigated in LPS-stimulated RAW264.7 cells.

Results

DTCM-G significantly ameliorated TNBS-induced colitis, according to the body weight loss, disease activity index, colonic obstruction, macroscopic colonic inflammation score, mucosal myeloperoxidase activity, and histopathology. Immunohistochemistry and isolated lamina propria mononuclear cells showed significantly reduced colonic F4/80+ and CD11b+ macrophage infiltration. DTCM-G significantly suppressed tumor necrosis factor (TNF)-α and interleukin (IL)-6 messenger RNA expression in the colon and attenuated DSS-induced colitis, according to the disease activity index and histopathology. In RAW264.7 cells, DTCM-G suppressed LPS-induced TNF-α/IL-6 production and enhanced glycogen synthase kinase-3β phosphorylation.

Conclusions

DTCM-G attenuated murine experimental colitis by inhibiting macrophage infiltration and inflammatory cytokine expression. Thus, DTCM-G may be a promising treatment for inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sandborn WJ. Current directions in IBD therapy: what goals are feasible with biological modifiers? Gastroenterology. 2008;135:1442–7.

    Article  PubMed  Google Scholar 

  2. Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369:1627–40.

    Article  CAS  PubMed  Google Scholar 

  3. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet. 2007;369:1641–57.

    Article  CAS  PubMed  Google Scholar 

  4. Hanai H, Iida T, Takeuchi K, Watanabe F, Yamada M, Kikuyama M, et al. Adsorptive depletion of elevated proinflammatory CD14+ CD16+ DR++ monocytes in patients with inflammatory bowel disease. Am J Gastroenterol. 2008;103:1210–6.

    Article  PubMed  Google Scholar 

  5. Grimm MC, Pullman WE, Bennett GM, Sullivan PJ, Pavli P, Doe WF. Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J Gastroenterol Hepatol. 1995;10:387–95.

    Article  CAS  PubMed  Google Scholar 

  6. Zimmerman NP, Vongsa RA, Wendt MK, Dwinell MB. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm Bowel Dis. 2008;14:1000–11.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Reimund JM, Wittersheim C, Dumont S, Muller CD, Baumann R, Poindron P, et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn’s disease. J Clin Immunol. 1996;16:144–50.

    Article  CAS  PubMed  Google Scholar 

  8. von Lampe B, Barthel B, Coupland SE, Riecken EO, Rosewicz S. Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease. Gut. 2000;47:63–73.

    Article  Google Scholar 

  9. Travis S, Yap LM, Hawkey C, Warren B, Lazarov M, Fong T, et al. RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm Bowel Dis. 2005;11:713–9.

    Article  PubMed  Google Scholar 

  10. Hommes D, van den Blink B, Plasse T, Bartelsman J, Xu C, Macpherson B, et al. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease. Gastroenterology. 2002;122:7–14.

    Article  CAS  PubMed  Google Scholar 

  11. Dotan I, Rachmilewitz D, Schreiber S, Eliakim R, van der Woude CJ, Kornbluth A, et al. A randomised placebo-controlled multicentre trial of intravenous semapimod HCl for moderate to severe Crohn’s disease. Gut. 2010;59:760–6.

    Article  CAS  PubMed  Google Scholar 

  12. Matsumoto N, Ariga A, To-e S, Nakamura H, Agata N, Hirano S, et al. Synthesis of NF-kappaB activation inhibitors derived from epoxyquinomicin C. Bioorg Med Chem Lett. 2000;10:865–9.

    Article  CAS  PubMed  Google Scholar 

  13. Funakoshi T, Yamashita K, Ichikawa N, Fukai M, Suzuki T, Goto R, et al. A novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates inflammatory colonic injury in mice. J Crohns Colitis. 2012;6:215–25.

    Article  PubMed  Google Scholar 

  14. Takeiri M, Tachibana M, Kaneda A, Ito A, Ishikawa Y, Nishiyama S, et al. Inhibition of macrophage activation and suppression of graft rejection by DTCM-glutarimide, a novel piperidine derived from the antibiotic 9-methylstreptimidone. Inflamm Res. 2011;60:879–88.

    Article  CAS  PubMed  Google Scholar 

  15. Shibasaki S, Yamashita K, Goto R, Wakayama K, Tsunetoshi Y, Zaitsu M, et al. Immunosuppressive effects of DTCM-G, a novel inhibitor of the mTOR downstream signaling pathway. Transplantation. 2013;95:542–50.

    Article  CAS  PubMed  Google Scholar 

  16. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238–49.

    CAS  PubMed  Google Scholar 

  17. Wallace JL, Keenan CM, Gale D, Shoupe TS. Exacerbation of experimental colitis by nonsteroidal anti-inflammatory drugs is not related to elevated leukotriene B4 synthesis. Gastroenterology. 1992;102:18–27.

    CAS  PubMed  Google Scholar 

  18. Neurath MF, Fuss I, Kelsall BL, Stüber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182:1281–90.

    Article  CAS  PubMed  Google Scholar 

  19. Dieleman LA, Palmen MJ, Akol H, Bloemena E, Peña AS, Meuwissen SG, et al. Chronic experimental colitis induced by dextransulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 1998;114:385–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous Inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982;78:206–9.

    Article  CAS  PubMed  Google Scholar 

  21. Dohi T, Fujihashi K, Rennert PD, Iwatani K, Kiyono H, McGhee JR. Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J Exp Med. 1999;189:1169–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. te Velde AA, Verstege MI, Hommes DW. Critical appraisal of the current practice in murine TNBS-induced colitis. Inflamm Bowel Dis. 2006;12:995–9.

    Article  Google Scholar 

  23. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.

    CAS  PubMed  Google Scholar 

  24. Hollenbach E, Vieth M, Roessner A, Neumann M, Malfertheiner P, Naumann M. Inhibition of RICK/nuclear factor-kappaB and p38 signaling attenuates the inflammatory response in a murine model of Crohn disease. J Biol Chem. 2005;280:14981–8.

    Article  CAS  PubMed  Google Scholar 

  25. Pereira-Fantini PM, Judd LM, Kalantzis A, Peterson A, Ernst M, Heath JK, et al. A33 antigen-deficient mice have defective colonic mucosal repair. Inflamm Bowel Dis. 2010;16:604–12.

    Article  PubMed  Google Scholar 

  26. Palmen MJ, Dieleman LA, van der Ende MB, Uyterlinde A, Peña AS, Meuwissen SG, et al. Non-lymphoid and lymphoid cells in acute, chronic and relapsing experimental colitis. Clin Exp Immunol. 1995;99:226–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989;96:795–803.

    CAS  PubMed  Google Scholar 

  28. Khan WI, Motomura Y, Wang H, El-Sharkawy RT, Verdu EF, Verma-Gandhu M, et al. Critical role of MCP-1 in the pathogenesis of experimental colitis in the context of immune and enterochromaffin cells. Am J Physiol Gastrointest Liver Physiol. 2006;291:G803–11.

    Article  CAS  PubMed  Google Scholar 

  29. Kanai T, Watanabe M, Okazawa A, Sato T, Yamazaki M, Okamoto S, et al. Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn’s disease. Gastroenterology. 2001;121:875–88.

    Article  CAS  PubMed  Google Scholar 

  30. Palmen MJ, Dijkstra CD, van der Ende MB, Peña AS, van Rees EP. Anti-CD1lb/CD18 antibodies reduce inflammation in acute colitis in rats. Clin Exp Immunol. 1995;101:351–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Woywodt A, Ludwig D, Neustock P, Kruse A, Schwarting K, Jantschek G, et al. Mucosal cytokine expression, cellular markers and adhesion molecules in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 1999;11:267–76.

    Article  CAS  PubMed  Google Scholar 

  32. Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyer zum Büschenfelde KH, et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol. 1997;27:1743–50.

    Article  CAS  PubMed  Google Scholar 

  33. Salh B, Wagey R, Marotta A, Tao JS, Pelech S. Activation of phosphatidylinositol 3-kinase, protein kinase B, and p70 S6 kinases in lipopolysaccharide-stimulated Raw 264.7 cells: differential effects of rapamycin, Ly294002, and wortmannin on nitric oxide production. J Immunol. 1998;161:6947–54.

    CAS  PubMed  Google Scholar 

  34. Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 2005;6:777–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Steinbrecher KA, Wilson W 3rd, Cogswell PC, Baldwin AS. Glycogen synthase kinase 3β functions to specify gene-specific, NF-κB-dependent transcription. Mol Cell Biol. 2005;25:8444–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Uno JK, Rao KN, Matsuoka K, Sheikh SZ, Kobayashi T, Li F, et al. Altered macrophage function contributes to colitis in mice defective in the phosphoinositide-3 kinase subunit p110δ. Gastroenterology. 2010;139:1642–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Hofmann C, Dunger N, Schölmerich J, Falk W, Obermeier F. Glycogen synthase kinase 3-β: a master regulator of toll-like receptor-mediated chronic intestinal inflammation. Inflamm Bowel Dis. 2010;16:1850–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by funding from the Promotion of Fundamental Studies in Health Sciences initiative of the National Institute of Biomedical Innovation and a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenichiro Yamashita or Satoru Todo.

Ethics declarations

Compliance with ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All the procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: Yoshiya Tanaka.

Kenichiro Yamashita and Satoru Todo have contributed equally as senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichikawa, N., Yamashita, K., Funakoshi, T. et al. Novel anti-inflammatory agent 3-[(dodecylthiocarbonyl)-methyl]-glutarimide ameliorates murine models of inflammatory bowel disease. Inflamm. Res. 65, 245–260 (2016). https://doi.org/10.1007/s00011-015-0911-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0911-0

Keywords

Navigation