Skip to main content
Log in

Myeloperoxidase negatively regulates the expression of proinflammatory cytokines and chemokines by zymosan-induced mouse neutrophils

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

We have previously reported that myeloperoxidase-deficient (MPO−/−) neutrophils produce greater amounts of macrophage inflammatory protein-2 (MIP-2) upon in vitro stimulation with zymosan than wild-type neutrophils. This study aimed to examine the effect of MPO deficiency on the expression of other cytokines and chemokines.

Methods

Wild-type and MPO−/− neutrophils isolated from peritoneal cavity were stimulated with zymosan in vitro. Secretion of MIP-1α, MIP-1β, interleukin (IL)-1α, IL-1β, and tumor necrosis factor (TNF)-α by neutrophils was quantified by ELISA. mRNA expression in the neutrophils was analyzed by real-time reverse transcription-PCR, and the phosphorylation of extracellular-signal regulated kinase (ERK) 1/2 and p38 mitogen activated protein kinase (MAPK) in neutrophils was analyzed by western blot. For in vivo studies, mice were inoculated with zymosan intranasally, and the levels of these cytokines and chemokines were measured in the lungs.

Results

The MPO−/− neutrophils stimulated by zymosan expressed and secreted significantly higher levels of MIP-1α, MIP-1β, IL-1α, IL-1β, and TNF-α than the stimulated wild-type cells. Expression of all of these inflammatory mediators was blocked by pre-treatment with BAY11-7082, U0126, and SB203580, which are inhibitors of nuclear factor (NF)-κB, ERK1/2, and p38 MAPK, respectively. Enhanced expression of these inflammatory mediators is associated with elevated activation of ERK1/2 in stimulated MPO−/− neutrophils. In vivo, MPO−/− mice had significantly higher numbers of alveolar neutrophils and increased production of MIP-1α, MIP-1β, IL-1α, IL-1β, and TNF-α relative to the responses seen in wild-type mice within 24 h of zymosan administration.

Conclusion

MPO deficiency upregulates the expression of several proinflammatory cytokines and chemokines in mouse neutrophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77:598–625.

    Article  PubMed  CAS  Google Scholar 

  2. Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol. 2013;93:185–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F, Maeda N. Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun. 1999;67:1828–36.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Ishida-Okawara A, et al. Contribution of the myeloperoxidase-dependent oxidative system to host defence against Cryptococcus neoformans. J Med Microbiol. 2006;55:1291–9.

    Article  PubMed  CAS  Google Scholar 

  5. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med Mycol. 2002;40:557–63.

    Article  PubMed  CAS  Google Scholar 

  6. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J Infect Dis. 2002;185:1833–7.

    Article  PubMed  CAS  Google Scholar 

  7. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. J Infect Dis. 2000;182:1276–9.

    Article  PubMed  CAS  Google Scholar 

  8. Takeuchi K, Umeki Y, Matsumoto N, Yamamoto K, Yoshida M, Suzuki K, et al. Severe neutrophil-mediated lung inflammation in myeloperoxidase-deficient mice exposed to zymosan. Inflamm Res. 2013;61:197–205.

    Article  Google Scholar 

  9. Tateno N, Matsumoto N, Motowaki T, Suzuki K, Aratani Y. Myeloperoxidase deficiency induces MIP-2 production via ERK activation in zymosan-stimulated mouse neutrophils. Free Radic Res. 2013;47:376–85.

    Article  PubMed  CAS  Google Scholar 

  10. Homme M, Tateno N, Miura N, Ohno N, Aratani Y. Myeloperoxidase deficiency in mice exacerbates lung inflammation induced by nonviable Candida albicans. Inflamm Res. 2013;62:981–90.

    Article  PubMed  CAS  Google Scholar 

  11. De Filippo K, Henderson RB, Laschinger M, Hogg N. Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. J Immunol. 2008;180:4308–15.

    Article  PubMed  Google Scholar 

  12. Driscoll KE. TNFalpha and MIP-2: role in particle-induced inflammation and regulation by oxidative stress. Toxicol Lett. 2000;112–113:177–83.

    Article  PubMed  Google Scholar 

  13. Kobayashi Y. The role of chemokines in neutrophil biology. Front Biosci. 2008;13:2400–7.

    Article  PubMed  CAS  Google Scholar 

  14. Menten P, Wuyts A, Van Damme J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev. 2002;13:455–81.

    Article  PubMed  CAS  Google Scholar 

  15. Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013;25:469–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Apostolaki M, Armaka M, Victoratos P, Kollias G. Cellular mechanisms of TNF function in models of inflammation and autoimmunity. Curr Dir Autoimmun. 2010;11:1–26.

    Article  PubMed  CAS  Google Scholar 

  17. Fleming TJ, Fleming ML, Malek TR. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol. 1993;151:2399–408.

    PubMed  CAS  Google Scholar 

  18. Zampetaki A, Mitsialis SA, Pfeilschifter J, Kourembanas S. Hypoxia induces macrophage inflammatory protein-2 (MIP-2) gene expression in murine macrophages via NF-kappaB: the prominent role of p42/p44 and PI3 kinase pathways. FASEB J. 2004;18:1090–2.

    PubMed  CAS  Google Scholar 

  19. Babior BM. NADPH oxidase: an update. Blood. 1999;93:1464–76.

    PubMed  CAS  Google Scholar 

  20. Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol. 2004;122:277–91.

    Article  PubMed  CAS  Google Scholar 

  21. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92:3007–17.

    PubMed  CAS  Google Scholar 

  22. Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med. 2007;42:153–64.

    Article  PubMed  CAS  Google Scholar 

  23. Hatanaka E, Carvalho BT, Condino-Neto A, Campa A. Hyperresponsiveness of neutrophils from gp 91phox deficient patients to lipopolysaccharide and serum amyloid A. Immunol Lett. 2004;94:43–6.

    Article  PubMed  CAS  Google Scholar 

  24. Lekstrom-Himes JA, Kuhns DB, Alvord WG, Gallin JI. Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease. J Immunol. 2005;174:411–7.

    Article  PubMed  CAS  Google Scholar 

  25. Brown KL, Bylund J, MacDonald KL, Song-Zhao GX, Elliott MR, Falsafi R, et al. ROS-deficient monocytes have aberrant gene expression that correlates with inflammatory disorders of chronic granulomatous disease. Clin Immunol. 2008;129:90–102.

    Article  PubMed  CAS  Google Scholar 

  26. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18:6853–66.

    Article  PubMed  CAS  Google Scholar 

  27. Cassatella MA. Interferon-gamma inhibits the lipopolysaccharide-induced macrophage inflammatory protein-1 alpha gene transcription in human neutrophils. Immunol Lett. 1996;49:79–82.

    Article  PubMed  CAS  Google Scholar 

  28. Fernandez MC, Walters J, Marucha P. Transcriptional and post-transcriptional regulation of GM-CSF-induced IL-1 beta gene expression in PMN. J Leukoc Biol. 1996;59:598–603.

    PubMed  CAS  Google Scholar 

  29. Chen BC, Chang YS, Kang JC, Hsu MJ, Sheu JR, Chen TL, et al. Peptidoglycan induces nuclear factor-kappaB activation and cyclooxygenase-2 expression via Ras, Raf-1, and ERK in RAW 264.7 macrophages. J Biol Chem. 2004;279:20889–97.

    Article  PubMed  CAS  Google Scholar 

  30. Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan SF, et al. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood. 2001;98:1429–39.

    Article  PubMed  CAS  Google Scholar 

  31. Saccani S, Pantano S, Natoli G. p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol. 2002;3:69–75.

    Article  PubMed  CAS  Google Scholar 

  32. Carter AB, Monick MM, Hunninghake GW. Both Erk and p38 kinases are necessary for cytokine gene transcription. Am J Respir Cell Mol Biol. 1999;20:751–8.

    Article  PubMed  CAS  Google Scholar 

  33. Cloutier A, Ear T, Blais-Charron E, Dubois CM, McDonald PP. Differential involvement of NF-kappaB and MAP kinase pathways in the generation of inflammatory cytokines by human neutrophils. J Leukoc Biol. 2007;81:567–77.

    Article  PubMed  CAS  Google Scholar 

  34. Kang YJ, Chen J, Otsuka M, Mols J, Ren S, Wang Y, et al. Macrophage deletion of p38alpha partially impairs lipopolysaccharide-induced cellular activation. J Immunol. 2008;180:5075–82.

    Article  PubMed  CAS  Google Scholar 

  35. Sabio G, Davis RJ. TNF and MAP kinase signalling pathways. Semin Immunol. 2014;26:237–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Hamilton TA, Novotny M, Datta S, Mandal P, Hartupee J, Tebo J, et al. Chemokine and chemoattractant receptor expression: post-transcriptional regulation. J Leukoc Biol. 2007;82:213–9.

    Article  PubMed  CAS  Google Scholar 

  37. Richmond A. Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol. 2002;2:664–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Nick JA, Avdi NJ, Young SK, Lehman LA, McDonald PP, Frasch SC, et al. Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest. 1999;103:851–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Dai Y, Datta S, Novotny M, Hamilton TA. TGFbeta inhibits LPS-induced chemokine mRNA stabilization. Blood. 2003;102:1178–85.

    Article  PubMed  CAS  Google Scholar 

  40. Hamilton T, Novotny M, Pavicic PJ Jr, Herjan T, Hartupee J, Sun D, et al. Diversity in post-transcriptional control of neutrophil chemoattractant cytokine gene expression. Cytokine. 2010;52:116–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant number 26450446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Aratani.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest.

Additional information

Responsible Editor: Bernhard Gibbs.

D. Endo and T. Saito contributed equally to this work and are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, D., Saito, T., Umeki, Y. et al. Myeloperoxidase negatively regulates the expression of proinflammatory cytokines and chemokines by zymosan-induced mouse neutrophils. Inflamm. Res. 65, 151–159 (2016). https://doi.org/10.1007/s00011-015-0899-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0899-5

Keywords

Navigation