Skip to main content

Advertisement

Log in

Anti-angiogenic and anti-inflammatory effect of Magnolol in the oxygen-induced retinopathy model

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

In the present study, we investigated the effects of Magnolol on the retinal neovascularization (RNV) and local glial cells in an oxygen-induced retinopathy (OIR) model and explored their molecular mechanisms.

Materials and methods

Neonatal C57BL/6J mice were subjected to 75 % O2 ± 5 % from postnatal day (P) 7 to P12 and subsequently returned to room air. Mice were injected with 25 mg/kg Magnolol intraperitoneally once a day from P12 to P17, then retinas were harvested and flat-mounted to assess the retinal vessels, astrocytes and microglia. To clarify the molecular mechanisms of Magnolol, we observed the level of inflammatory cytokines such as interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1, tumor necrosis factor-α, and analyzed the hypoxia-inducible factor (HIF)-1α/vascular endothelial growth factor (VEGF) pathway in OIR mice.

Results

Intraperitoneal administration of Magnolol resulted in significant reduction of RNV without retinal toxicity or perturbation of developmental retinal angiogenesis. In addition, Magnolol preserved the astrocyte morphology and diminished the activation of microglia. Moreover, Magnolol down regulated the expression of inflammatory cytokines and inactivated the HIF-1α/VEGF pathway.

Conclusions

These results indicated that Magnolol might have potential for the treatment of pathological retinal angiogenesis and glial dysfunctions via anti-inflammation and inhibition of HIF-1α/VEGF pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Vessey KA, Wilkinson-Berka JL, Fletcher EL. Characterization of retinal function and glial cell response in a mouse model of oxygen-induced retinopathy. J Comp Neurol. 2011;519:506–27.

    Article  PubMed  CAS  Google Scholar 

  2. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22:1–29.

    Article  PubMed  CAS  Google Scholar 

  3. Miller JW, Le Couter J, Strauss EC, Ferrara N. Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology. 2013;120:106–14.

    Article  PubMed  Google Scholar 

  4. Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27:787–94.

    Article  CAS  Google Scholar 

  5. Kurihara T, Westenskow PD, Bravo S, Aguilar E, Friedlander M. Targeted deletion of Vegfa in adult mice induces vision loss. J Clin Invest. 2012;122:4213–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dorrell MI, Aguilar E, Jacobson R, Trauger SA, Friedlander J, Siuzdak G, et al. Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy. Glia. 2010;58:43–54.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, et al. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25:397–424.

    Article  PubMed  CAS  Google Scholar 

  8. Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci. 1995;15:4738–47.

    PubMed  CAS  Google Scholar 

  9. Kaur C, Foulds WS, Ling EA. Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res. 2008;27:622–47.

    Article  PubMed  CAS  Google Scholar 

  10. Dorrell MI, Aguilar E, Friedlander M. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci. 2002;43:3500–10.

    PubMed  Google Scholar 

  11. Zhang Y, Stone J. Role of astrocytes in the control of developing retinal vessels. Invest Ophthalmol Vis Sci. 1997;38:1653–66.

    PubMed  CAS  Google Scholar 

  12. Rivera JC, Sitaras N, Noueihed B, Hamel D, Madaan A, Zhou T, et al. Microglia and interleukin-1beta in ischemic retinopathy elicit microvascular degeneration through neuronal semaphorin-3A. Arterioscler Thromb Vasc Biol. 2013;33:1881–91.

    Article  PubMed  CAS  Google Scholar 

  13. Sivakumar V, Foulds WS, Luu CD, Ling EA, Kaur C. Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina. J Pathol. 2011;224:245–60.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshida S, Yoshida A, Ishibashi T. Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol. 2004;242:409–13.

    Article  PubMed  CAS  Google Scholar 

  15. Park J, Lee J, Jung E, Park Y, Kim K, Park B, et al. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur J Pharmacol. 2004;496:189–95.

    Article  PubMed  CAS  Google Scholar 

  16. Tsai YC, Cheng PY, Kung CW, Peng YJ, Ke TH, Wang JJ, et al. Beneficial effects of magnolol in a rodent model of endotoxin shock. Eur J Pharmacol. 2010;641:67–73.

    Article  PubMed  CAS  Google Scholar 

  17. Park JB, Lee MS, Cha EY, Lee JS, Sul JY, Song IS, et al. Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway. Biol Pharm Bull. 2012;35:1614–20.

    Article  PubMed  CAS  Google Scholar 

  18. Kim GD, Oh J, Park HJ, Bae K, Lee SK. Magnolol inhibits angiogenesis by regulating ROS-mediated apoptosis and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells. Int J Oncol. 2013;43:600–10.

    PubMed  CAS  Google Scholar 

  19. Lee MM, Huang HM, Hsieh MT, Chen CS, Yeh FT, Kuo JS. Anti-inflammatory and neuroprotective effects of magnolol in chemical hypoxia in rat cultured cortical cells in hypoglycemic media. Chin J Physiol. 2000;43:61–7.

    PubMed  CAS  Google Scholar 

  20. Chen MC, Lee CF, Huang WH, Chou TC. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1alpha/VEGF signaling pathway in human bladder cancer cells. Biochem Pharmacol. 2013;85:1278–87.

    Article  PubMed  CAS  Google Scholar 

  21. Kim KM, Kim NS, Kim J, Park JS, Yi JM, Lee J, et al. Magnolol suppresses vascular endothelial growth factor-induced angiogenesis by inhibiting Ras-dependent mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. Nutr Cancer. 2013;65:1245–53.

    Article  PubMed  CAS  Google Scholar 

  22. Lin SY, Chang YT, Liu JD, Yu CH, Ho YS, Lee YH, et al. Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells. Mol Carcinog. 2001;32:73–83.

    Article  PubMed  CAS  Google Scholar 

  23. Kumar S, Guru SK, Pathania AS, Kumar A, Bhushan S, Malik F. Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis. 2013;4:e889.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chen JH, Kuo HC, Lee KF, Tsai TH. Magnolol protects neurons against ischemia injury via the downregulation of p38/MAPK, CHOP and nitrotyrosine. Toxicol Appl Pharmacol. 2014;279:294–302.

    Article  PubMed  CAS  Google Scholar 

  25. Chuang DY, Chan MH, Zong Y, Sheng W, He Y, Jiang JH, et al. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. J Neuroinflammation. 2013;10:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci. 1994;35:101–11.

    PubMed  CAS  Google Scholar 

  27. Liang X, Zhou H, Ding Y, Li J, Yang C, Luo Y, et al. TMP prevents retinal neovascularization and imparts neuroprotection in an oxygen-induced retinopathy model. Invest Ophthalmol Vis Sci. 2012;53:2157–69.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Afzal A, Shaw LC, Ljubimov AV, Boulton ME, Segal MS, Grant MB. Retinal and choroidal microangiopathies: therapeutic opportunities. Microvasc Res. 2007;74:131–44.

    Article  PubMed  CAS  Google Scholar 

  29. Dorrell MI, Friedlander M. Mechanisms of endothelial cell guidance and vascular patterning in the developing mouse retina. Prog Retin Eye Res. 2006;25:277–95.

    Article  PubMed  Google Scholar 

  30. Yang L, Xu Y, Li W, Yang B, Yu S, Zhou H, et al. Diacylglycerol kinase (DGK) inhibitor II (R59949) could suppress retinal neovascularization and protect retinal astrocytes in an oxygen-induced retinopathy model. J Mol Neurosci. 2015;56:78–88.

    Article  PubMed  CAS  Google Scholar 

  31. Fletcher EL, Downie LE, Hatzopoulos K, Vessey KA, Ward MM, Chow CL, et al. The significance of neuronal and glial cell changes in the rat retina during oxygen-induced retinopathy. Doc Ophthalmol. 2010;120:67–86.

    Article  PubMed  Google Scholar 

  32. Eichler W, Yafai Y, Keller T, Wiedemann P, Reichenbach A. PEDF derived from glial Muller cells: a possible regulator of retinal angiogenesis. Exp Cell Res. 2004;299:68–78.

    Article  PubMed  CAS  Google Scholar 

  33. Eisenfeld AJ, Bunt-Milam AH, Sarthy PV. Muller cell expression of glial fibrillary acidic protein after genetic and experimental photoreceptor degeneration in the rat retina. Invest Ophthalmol Vis Sci. 1984;25:1321–8.

    PubMed  CAS  Google Scholar 

  34. Tanihara H, Hangai M, Sawaguchi S, Abe H, Kageyama M, Nakazawa F, et al. Up-regulation of glial fibrillary acidic protein in the retina of primate eyes with experimental glaucoma. Arch Ophthalmol. 1997;115:752–6.

    Article  PubMed  CAS  Google Scholar 

  35. Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S. Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci. 2006;47:3595–602.

    Article  PubMed  Google Scholar 

  36. Chen L, Yang P, Kijlstra A. Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm. 2002;10:27–39.

    Article  PubMed  Google Scholar 

  37. Fischer F, Martin G, Agostini HT. Activation of retinal microglia rather than microglial cell density correlates with retinal neovascularization in the mouse model of oxygen-induced retinopathy. J Neuroinflamm. 2011;8:120.

    Article  CAS  Google Scholar 

  38. Davies MH, Eubanks JP, Powers MR. Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. Mol Vis. 2006;12:467–77.

    PubMed  CAS  Google Scholar 

  39. Zhao L, Ma W, Fariss RN, Wong WT. Retinal vascular repair and neovascularization are not dependent on CX3CR1 signaling in a model of ischemic retinopathy. Exp Eye Res. 2009;88:1004–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sanchez RN, Chan CK, Garg S, Kwong JM, Wong MJ, Sadun AA, et al. Interleukin-6 in retinal ischemia reperfusion injury in rats. Invest Ophthalmol Vis Sci. 2003;44:4006–11.

    Article  PubMed  Google Scholar 

  41. Liu X, Ye F, Xiong H, Hu DN, Limb GA, Xie T, et al. IL-1beta induces IL-6 production in retinal Muller cells predominantly through the activation of p38 MAPK/NF-kappaB signaling pathway. Exp Cell Res. 2015;331:223–31.

    Article  PubMed  CAS  Google Scholar 

  42. Yoshida S, Sotozono C, Ikeda T, Kinoshita S. Interleukin-6 (IL-6) production by cytokine-stimulated human Muller cells. Curr Eye Res. 2001;22:341–7.

    Article  PubMed  CAS  Google Scholar 

  43. Gardiner TA, Gibson DS, de Gooyer TE, de la Cruz VF, McDonald DM, Stitt AW. Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol. 2005;166:637–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol. 2013;8:66–78.

    Article  PubMed  Google Scholar 

  45. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J. 2001;15:1312–4.

    PubMed  CAS  Google Scholar 

  46. Mazure NM, Brahimi-Horn MC, Berta MA, Benizri E, Bilton RL, Dayan F, et al. HIF-1: master and commander of the hypoxic world. A pharmacological approach to its regulation by siRNAs. Biochem Pharmacol. 2004;68:971–80.

    Article  PubMed  CAS  Google Scholar 

  47. Kanoh H, Yamada K, Sakane F. Diacylglycerol kinases: emerging downstream regulators in cell signaling systems. J Biochem. 2002;131:629–33.

    Article  PubMed  CAS  Google Scholar 

  48. Park SW, Kim JH, Kim KE, Jeong MH, Park H, Park B, et al. Beta-lapachone inhibits pathological retinal neovascularization in oxygen-induced retinopathy via regulation of HIF-1alpha. J Cell Mol Med. 2014;18:875–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81470030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Liang.

Additional information

Responsible Editor: John Di Battista.

Boyu Yang and Yue Xu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Xu, Y., Yu, S. et al. Anti-angiogenic and anti-inflammatory effect of Magnolol in the oxygen-induced retinopathy model. Inflamm. Res. 65, 81–93 (2016). https://doi.org/10.1007/s00011-015-0894-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0894-x

Keywords

Navigation