Skip to main content

Advertisement

Log in

TNF-α-mediated suppression of Leydig cell steroidogenesis involves DAX-1

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) has an inhibitory role in gonadal functions particularly in the steroidogenesis of Leydig cells. A detailed understanding of the mechanisms by which TNF-α regulates testicular steroidogenesis will be helpful in the design of novel clinical interventions for the treatment and prevention of male reproductive disorders. Here, we report that TNF-α-mediated activation of DAX-1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is involved in the inhibition of Leydig cell steroidogenesis.

Materials and methods

Rat testis Leydig tumor cells (LC-540) were treated with TNF-α (10 ng/ml) for different time intervals. To elucidate the pathways of intracellular signal transduction that regulate DAX-1 expression, we utilized specific inhibitors. The siRNA transfection of DAX-1 into LC-540 cells was performed by electroporation. The mRNA and protein levels were determined by RT-PCR and Western blotting, respectively.

Results

We found that the mRNA and protein levels of DAX-1 were increased by threefold approximately in TNF-α-treated cells when compared to controls. Staurosporine, JNK inhibitor SP600125 and ERK inhibitor PD98059 significantly decreased DAX-1 expression in TNF-α-treated Leydig cells when compared to their respective controls. Further, a siRNA-mediated knockdown of DAX-1 restores the expression of steroidogenic proteins in TNF-α-treated Leydig cells.

Conclusions

These findings provide valuable information that TNF-α activates DAX-1 through JNK/ERK MAP kinase pathway which regulates the expression of steroidogenic enzyme genes in Leydig cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Walker WH. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis. 2011;1:116–20.

    Article  PubMed Central  PubMed  Google Scholar 

  2. McLachlan RI, O’Donnell L, Meachem SJ, Stanton PG, de Kretser DM, Pratis K, Robertson DM. Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog Horm Res. 2002;57:149–79.

    Article  CAS  PubMed  Google Scholar 

  3. Hales DB. Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol. 2002;57:3–18.

    Article  CAS  PubMed  Google Scholar 

  4. Bornstein SR, Rutkowski H, Vrezas I. Cytokines and steroidogenesis. Mol Cell Endocrinol. 2004;215:135–41.

    Article  CAS  PubMed  Google Scholar 

  5. Hong CY, Park JH, Ahn RS, Im SY, Choi HS, Soh J, Mellon SH, Lee K. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol. 2004;24:2593–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Calkins JH, Guo H, Sigel MM, Lin T. Tumor necrosis factor-alpha enhances inhibitory effects of interleukin-1 beta on Leydig cell steroidogenesis. Biochem Biophys Res Commun. 1990;166:1313–8.

    Article  CAS  PubMed  Google Scholar 

  7. Suescun MO, Rival C, Theas MS, Calandra RS, Lustig L. Involvement of tumor necrosis factor-alpha in the pathogenesis of autoimmune orchitis in rats. Biol Reprod. 2003;68:2114–21.

    Article  CAS  PubMed  Google Scholar 

  8. Xiong Y, Hales DB. The role of tumor necrosis factor-alpha in the regulation of mouse Leydig cell steroidogenesis. Endocrinology. 1993;132:2438–44.

    CAS  PubMed  Google Scholar 

  9. Xiong Y, Hales DB. Differential effects of tumor necrosis factor-alpha and interleukin-1 on 3 beta-hydroxysteroid dehydrogenase/delta53delta 4 isomerase expression in mouse Leydig cells. Endocrine. 1997;7:295–301.

    Article  CAS  PubMed  Google Scholar 

  10. Lalli E. Role of orphan nuclear receptor DAX-1/NR0B1 in development, physiology, and disease. Adv Biol. 2014;2014:582749.

    Article  Google Scholar 

  11. Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL. Role of Ahch in gonadal development and gametogenesis. Nat Genet. 1998;20:353–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lalli E, Melner MH, Stocco DM, Sassone-Corsi P. DAX-1 blocks steroid production at multiple levels. Endocrinology. 1998;139:4237–43.

    CAS  PubMed  Google Scholar 

  13. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol. 1999;17:331–67.

    Article  CAS  PubMed  Google Scholar 

  14. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–56.

    Article  CAS  PubMed  Google Scholar 

  15. Burkhard K, Shapiro P. Use of inhibitors in the study of MAP kinases. Methods Mol Biol. 2010;661:107–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26:127–32.

    Article  CAS  PubMed  Google Scholar 

  17. Lee J, Rhee MH, Kim E, Cho JY, BAY 11-7082 is a broad-spectrum inhibitor with anti-inflammatory activity against multiple targets. Mediat Inflam. 2012;2012:416036.

    Google Scholar 

  18. Guo C, Wang SL, Xu ST, Wang JG, Song GH. SP600125 reduces lipopolysaccharide-induced apoptosis and restores the early-stage differentiation of osteoblasts inhibited by LPS through the MAPK pathway in MC3T3-E1 cells. Int J Mol Med. 2015;35:1427–34.

    CAS  PubMed  Google Scholar 

  19. Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 1995;364:229–33.

    Article  CAS  PubMed  Google Scholar 

  20. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995;270:27489–94.

    Article  CAS  PubMed  Google Scholar 

  21. Wu L, Xu B, Fan W, Zhu X, Wang G, Zhang A. Adiponectin protects Leydig cells against proinflammatory cytokines by suppressing the nuclear factor-κB signaling pathway. FEBS J. 2013;280:3920–7.

    Article  CAS  PubMed  Google Scholar 

  22. Wu L, Zhang A, Sun Y, Zhu X, Fan W, Lu X, Yang Q, Feng Y. Sirt1 exerts anti-inflammatory effects and promotes steroidogenesis in Leydig cells. Fertil Steril. 2012;98:194–9.

    Article  CAS  PubMed  Google Scholar 

  23. Prahalathan C, Selvakumar E, Varalakshmi P. Modulatory role of lipoic acid on adriamycin-induced testicular injury. Chem Biol Interact. 2006;160:108–14.

    Article  CAS  PubMed  Google Scholar 

  24. Le Boeuf F, Houle F, Huot J. Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem. 2004;279:39175–85.

    Article  PubMed  Google Scholar 

  25. Tremblay PL, Auger FA, Huot J. Regulation of transendothelial migration of colon cancer cells by E-selectin-mediated activation of p38 and ERK MAP kinases. Oncogene. 2006;25:6563–73.

    Article  CAS  PubMed  Google Scholar 

  26. Peister A, Mellad JA, Wang M, Tucker HA, Prockop DJ. Stable transfection of MSCs by electroporation. Gene Ther. 2004;11:224–8.

    Article  CAS  PubMed  Google Scholar 

  27. Diemer T, Hales DB, Weidner W. Immune-endocrine interactions and Leydig cell function: the role of cytokines. Andrologia. 2003;35:55–63.

    Article  CAS  PubMed  Google Scholar 

  28. Diemer T, Allen JA, Hales KH, Hales DB. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology. 2003;144:2882–91.

    Article  CAS  PubMed  Google Scholar 

  29. Calandra T, Baumgartner JD, Grau GE, Wu MM, Lambert PH, Schellekens J, Verhoef J, Glauser MP. Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. J Infect Dis. 1990;161:982–7.

    Article  CAS  PubMed  Google Scholar 

  30. Cannon JG, Tompkins RG, Gelfand JA, Michie HR, Stanford GG, van der Meer JW, Endres S, Lonnemann G, Corsetti J, Chernow B, et al. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis. 1990;161:79–84.

    Article  CAS  PubMed  Google Scholar 

  31. Damas P, Reuter A, Gysen P, Demonty J, Lamy M, Franchimont P. Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med. 1989;17:975–8.

    Article  CAS  PubMed  Google Scholar 

  32. Vogel AV, Peake GT, Rada RT. Pituitary-testicular axis dysfunction in burned men. J Clin Endocrinol Metab. 1985;60:658–65.

    Article  CAS  PubMed  Google Scholar 

  33. Woolf PD, Hamill RW, McDonald JV, Lee LA, Kelly M. Transient hypogonadotropic hypogonadism caused by critical illness. J Clin Endocrinol Metab. 1985;60:444–50.

    Article  CAS  PubMed  Google Scholar 

  34. Mealy K, Robinson B, Millette CF, Majzoub J, Wilmore DW. The testicular effects of tumor necrosis factor. Ann Surg. 1990;211:470–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. van der Poll T, Romijn JA, Endert E, Sauerwein HP. Effects of tumor necrosis factor on the hypothalamic-pituitary-testicular axis in healthy men. Metabolism. 1993;42:303–7.

    Article  PubMed  Google Scholar 

  36. Crawford PA, Dorn C, Sadovsky Y, Milbrandt J. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol Cell Biol. 1998;18:2949–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Song KH, Park YY, Park KC, Hong CY, Park JH, Shong M, Choi HS. The atypical orphan nuclear receptor DAX-1 interacts with orphan nuclear receptor Nur77 and represses its transactivation. Mol Endocrinol. 2004;18:1929–40.

    Article  CAS  PubMed  Google Scholar 

  38. Holter E, Kotaja N, Ma¨kela S, Strauss L, Kietz S, Ja¨nne OA, Gustafsson JA, Palvimo JJ, Treuter E. Inhibition of androgen receptor (AR) function by the reproductive orphan nuclear receptor DAX-1. Mol Endocrinol. 2002;16:515–28.

    Article  CAS  PubMed  Google Scholar 

  39. Ahn SW, Gang GT, Kim YD, Ahn RS, Harris RA, Lee CH, Choi HS. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. J Biol Chem. 2013;288:15937–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Shimizu T, Sudo N, Yamashita H, Murayama C, Miyazaki H, Miyamoto A. Histone H3 acetylation of StAR and decrease in DAX-1 is involved in the luteinization of bovine granulosa cells during in vitro culture. Mol Cell Biochem. 2009;328:41–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Indian Council of Medical Research (ICMR), New Delhi, India for the financial assistance. The infrastructure provided by DST-FIST is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chidambaram Prahalathan.

Additional information

Responsible Editor: Andrew Roberts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11_2015_835_MOESM1_ESM.tif

Supplementary material 1 LC-540 cell viability is affected by TNF-α in a dose- a and time- b dependent manner. Values represent mean ± SD for 3 independent experiments (n=3). Values are statistically significant at *** P < 0.001, **P < 0.01 and * P < 0.05 (TIFF 153 kb)

11_2015_835_MOESM2_ESM.tif

Supplementary material 2 Effect of NF-κB inhibitor on DAX-1 protein levels in LC-540 Leydig cells cells. LC-540 Leydig cells were pretreated with BAY11-7082 (10µM) for 60min and then treated with or without TNF-α (10ng/ml) and used for the analysis of DAX-1 protein expressions. β-actin levels were utilized as internal control. Values represent mean ± SD for 3 independent experiments (n=3). Values are statistically significant at *** P < 0.001 (TIFF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadasivam, M., Ramatchandirin, B., Balakrishnan, S. et al. TNF-α-mediated suppression of Leydig cell steroidogenesis involves DAX-1. Inflamm. Res. 64, 549–556 (2015). https://doi.org/10.1007/s00011-015-0835-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0835-8

Keywords

Navigation