Advertisement

Inflammation Research

, Volume 64, Issue 3–4, pp 243–252 | Cite as

Hyaluronan suppresses mechanical stress-induced expression of catabolic enzymes by human chondrocytes via inhibition of IL-1β production and subsequent NF-κB activation

  • Masatsugu Ozawa
  • Keiichiro Nishida
  • Aki Yoshida
  • Taichi Saito
  • Ryozo Harada
  • Takahiro Machida
  • Toshifumi Ozaki
Original Research Paper

Abstract

Objective

To investigate the inhibitory effect of hyaluronan (HA) on mechanical stress- induced expression of a disintegrin and metalloproteinase with thrombospondin type1 motifs (ADAMTS)-4, -5 and matrix metalloproteinase (MMP)-13 by human chondrocytes.

Materials and methods

Normal human articular chondrocytes were pre-incubated with or without 1.0 mg/mL HA (2700 kDa) for 12 h at 37 °C in stretch chambers, then they were exposed to uni-axial cyclic tensile strain (CTS, 0.5 Hz, 10 % elongation). The expression of ADAMTS-4, -5, and MMP-13 were analyzed by real-time polymerase chain reaction and Immunocytochemistry. The concentration of IL-1β in the supernatant was measured using enzyme-linked immunosorbent assay (ELISA). The nuclear translocation of runt-related transcription factor 2 (RUNX-2) and nuclear factor-κB (NF-κB) was examined by ELISA and immunocytochemistry, and phosphorylation of NF-κB was examined by western blotting.

Results

HA inhibited mRNA expression of ADAMTS-4, -5, and MMP13 after 24 h CTS via inhibition of IL-1β secretion and NF-κB activation. However, HA failed to inhibit CTS-induced RUNX-2 expression and subsequent expression of ADAMTS-5 and MMP-13 1 h after CTS.

Conclusions

Our results demonstrated that HA significantly suppressed mechanical stress-induced expression of catabolic proteases by inhibition of the NF-κB–IL-1β pathway, but did not suppress mechanical stress-induced RUNX-2 signaling.

Keywords

Chondrocyte Hyaluronan Mechanical stress Aggrecanase NF-κB RUNX-2 

References

  1. 1.
    Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96. doi: 10.1016/S0140-6736(12)61729-2.CrossRefPubMedGoogle Scholar
  2. 2.
    Rydell N, Balazs EA. Effect of intra-articular injection of hyaluronic acid on the clinical symptoms of osteoarthritis and on granulation tissue formation. Clin Orthop Relat Res. 1971;80:25–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Uebelhart D, Williams JM. Effects of hyaluronic acid on cartilage degradation. Curr Opin Rheumatol. 1999;11(5):427–35.CrossRefPubMedGoogle Scholar
  4. 4.
    Goldberg VM, Buckwalter JA. Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthr Cartil. 2005;13(3):216–24. doi: 10.1016/j.joca.2004.11.010.CrossRefPubMedGoogle Scholar
  5. 5.
    Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther. 2003;5(2):54–67.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Gigante A, Callegari L. The role of intra-articular hyaluronan (Sinovial) in the treatment of osteoarthritis. Rheumatol Int. 2011;31(4):427–44. doi: 10.1007/s00296-010-1660-6.CrossRefPubMedGoogle Scholar
  7. 7.
    Gotoh S, Onaya J, Abe M, Miyazaki K, Hamai A, Horie K, et al. Effects of the molecular weight of hyaluronic acid and its action mechanisms on experimental joint pain in rats. Ann Rheum Dis. 1993;52(11):817–22.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Yoshida M, Sai S, Marumo K, Tanaka T, Itano N, Kimata K, et al. Expression analysis of three isoforms of hyaluronan synthase and hyaluronidase in the synovium of knees in osteoarthritis and rheumatoid arthritis by quantitative real-time reverse transcriptase polymerase chain reaction. Arthritis Res Ther. 2004;6(6):R514–20. doi: 10.1186/ar1223.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Migliore A, Granata M. Intra-articular use of hyaluronic acid in the treatment of osteoarthritis. Clin Interv Aging. 2008;3(2):365–9.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Lisignoli G, Grassi F, Zini N, Toneguzzi S, Piacentini A, Guidolin D, et al. Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) invovement. Arthritis Rheum. 2001;44(8):1800–7. doi: 10.1002/1529-0131(200108)44:8<1800:AID-ART317>3.0.CO;2-1.CrossRefPubMedGoogle Scholar
  11. 11.
    Huang K, Wu LD. Aggrecanase and aggrecan degradation in osteoarthritis: a review. J Int Med Res. 2008;36(6):1149–60.CrossRefPubMedGoogle Scholar
  12. 12.
    Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434(7033):644–8. doi: 10.1038/nature03369.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang M, Sampson ER, Jin H, Li J, Ke QH, Im HJ, et al. MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther. 2013;15(1):R5. doi: 10.1186/ar4133.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature. 2005;434(7033):648–52. doi: 10.1038/nature03417.CrossRefPubMedGoogle Scholar
  15. 15.
    Glasson SS, Askew R, Sheppard B, Carito BA, Blanchet T, Ma HL, et al. Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum. 2004;50(8):2547–58. doi: 10.1002/art.20558.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang X, Manner PA, Horner A, Shum L, Tuan RS, Nuckolls GH. Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthr Cartil. 2004;12(12):963–73. doi: 10.1016/j.joca.2004.08.008.CrossRefPubMedGoogle Scholar
  17. 17.
    Rigoglou S, Papavassiliou AG. The NF-kappaB signalling pathway in osteoarthritis. Int J Biochem Cell Biol. 2013;45(11):2580–4. doi: 10.1016/j.biocel.2013.08.018.CrossRefPubMedGoogle Scholar
  18. 18.
    Julovi SM, Yasuda T, Shimizu M, Hiramitsu T, Nakamura T. Inhibition of interleukin-1beta-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum. 2004;50(2):516–25. doi: 10.1002/art.20004.CrossRefPubMedGoogle Scholar
  19. 19.
    Yatabe T, Mochizuki S, Takizawa M, Chijiiwa M, Okada A, Kimura T, et al. Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondrocytes. Ann Rheum Dis. 2009;68(6):1051–8. doi: 10.1136/ard.2007.086884.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Hashizume M, Mihara M. High molecular weight hyaluronic acid inhibits IL-6-induced MMP production from human chondrocytes by up-regulating the ERK inhibitor, MKP-1. Biochem Biophys Res Commun. 2010;403(2):184–9. doi: 10.1016/j.bbrc.2010.10.135.CrossRefPubMedGoogle Scholar
  21. 21.
    Yasuda T. Nuclear factor-kappaB activation by type II collagen peptide in articular chondrocytes: its inhibition by hyaluronan via the receptors. Mod Rheumatol. 2012;. doi: 10.1007/s10165-012-0804-9.Google Scholar
  22. 22.
    Tetsunaga T, Nishida K, Furumatsu T, Naruse K, Hirohata S, Yoshida A, et al. Regulation of mechanical stress-induced MMP-13 and ADAMTS-5 expression by RUNX-2 transcriptional factor in SW1353 chondrocyte-like cells. Osteoarthr Cartil. 2011;19(2):222–32. doi: 10.1016/j.joca.2010.11.004.CrossRefPubMedGoogle Scholar
  23. 23.
    Naruse K, Yamada T, Sokabe M. Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol. 1998;274(5 Pt 2):H1532–8.PubMedGoogle Scholar
  24. 24.
    Hirano Y, Ishiguro N, Sokabe M, Takigawa M, Naruse K. Effects of tensile and compressive strains on response of a chondrocytic cell line embedded in type I collagen gel. J Biotechnol. 2008;133(2):245–52. doi: 10.1016/j.jbiotec.2007.07.955.CrossRefPubMedGoogle Scholar
  25. 25.
    Saito T, Nishida K, Furumatsu T, Yoshida A, Ozawa M, Ozaki T. Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil. 2013;21(1):165–74. doi: 10.1016/j.joca.2012.09.003.CrossRefPubMedGoogle Scholar
  26. 26.
    Hashizume M, Mihara M. Desirable effect of combination therapy with high molecular weight hyaluronate and NSAIDs on MMP production. Osteoarthr Cartil. 2009;17(11):1513–8. doi: 10.1016/j.joca.2009.04.018.CrossRefPubMedGoogle Scholar
  27. 27.
    Thirunavukkarasu K, Pei Y, Wei T. Characterization of the human ADAMTS-5 (aggrecanase-2) gene promoter. Mol Biol Rep. 2007;34(4):225–31. doi: 10.1007/s11033-006-9037-3.CrossRefPubMedGoogle Scholar
  28. 28.
    Kobayashi H, Hirata M, Saito T, Itoh S, Chung UI, Kawaguchi H. Transcriptional induction of ADAMTS5 protein by nuclear factor-kappaB (NF-kappaB) family member RelA/p65 in chondrocytes during osteoarthritis development. J Biol Chem. 2013;288(40):28620–9. doi: 10.1074/jbc.M113.452169.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum. 2000;43(4):801–11. doi: 10.1002/1529-0131(200004)43:4<801:aid-anr10>3.0.co;2-4.CrossRefPubMedGoogle Scholar
  30. 30.
    Tian Y, Yuan W, Fujita N, Wang J, Wang H, Shapiro IM, et al. Inflammatory cytokines associated with degenerative disc disease control aggrecanase-1 (ADAMTS-4) expression in nucleus pulposus cells through MAPK and NF-kappaB. Am J Pathol. 2013;182(6):2310–21. doi: 10.1016/j.ajpath.2013.02.037.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034. doi: 10.1101/cshperspect.a000034.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Sylvester J, El Mabrouk M, Ahmad R, Chaudry A, Zafarullah M. Interleukin-1 induction of aggrecanase gene expression in human articular chondrocytes is mediated by mitogen-activated protein kinases. Cell Physiol Biochem. 2012;30(3):563–74. doi: 10.1159/000341438.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang J, Markova D, Anderson DG, Zheng Z, Shapiro IM, Risbud MV. TNF-alpha and IL-1beta promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. J Biol Chem. 2011;286(46):39738–49. doi: 10.1074/jbc.M111.264549.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Calatroni A. Differential effect of molecular size HA in mouse chondrocytes stimulated with PMA. Biochim Biophys Acta. 2009;1790(10):1353–67. doi: 10.1016/j.bbagen.2009.07.003.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee PB, Kim YC, Lim YJ, Lee CJ, Sim WS, Ha CW, et al. Comparison between high and low molecular weight hyaluronates in knee osteoarthritis patients: open-label, randomized, multicentre clinical trial. J Int Med Res. 2006;34(1):77–87.CrossRefPubMedGoogle Scholar
  36. 36.
    Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J. Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol. 2006;207(2):454–60. doi: 10.1002/jcp.20581.CrossRefPubMedGoogle Scholar
  37. 37.
    Katz S, Boland R, Santillan G. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int J Biochem Cell Biol. 2006;38(12):2082–91. doi: 10.1016/j.biocel.2006.05.018.CrossRefPubMedGoogle Scholar
  38. 38.
    Prasadam I, Mao X, Shi W, Crawford R, Xiao Y. Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment. J Mol Med (Berl). 2013;91(3):369–80. doi: 10.1007/s00109-012-0953-5.CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Masatsugu Ozawa
    • 1
  • Keiichiro Nishida
    • 2
  • Aki Yoshida
    • 1
  • Taichi Saito
    • 3
  • Ryozo Harada
    • 1
  • Takahiro Machida
    • 1
  • Toshifumi Ozaki
    • 1
  1. 1.Department of Orthopaedic SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama CityJapan
  2. 2.Department of Human MorphologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama CityJapan
  3. 3.Department of Orthopaedic SurgeryAko Central HospitalAkoJapan

Personalised recommendations