Skip to main content

Advertisement

Log in

Effect of nitric oxide on microRNA-155 expression in human hepatic epithelial cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Nitric oxide (NO) is a signaling molecule and regulator of immunity and inflammation. MicroRNAs (miRNAs) regulate gene transcription and are involved in inflammatory processes and cancer. This study sought to determine if NO activity affects miRNA expression.

Methods

Human liver epithelial (HepG2) cells were treated with the NO-releasing S-nitroso-N-acetylpenicillamine (SNAP) 100 μM for 4 h and subjected to microarray analysis. To examine the underlying mechanisms, cells were exposed to cGMP analog 8-bromo-cGMP, protein kinase inhibitor Rp-*-Br-PET-cGMPS (Rp-PET), or nitric synthase inhibitor l-NAME and evaluated with RT-PCR.

Results

MiR-155 was the only miRNA of the 887 arrayed that showed a change in expression after SNAP treatment. Incubation of the cells with 8-bromo-cGMP increased miR-155 expression 4.0 ± 0.7-fold (p < 0.05); Rp-PET before SNAP had a dual, concentration-dependent effect. SNAP treatment induced a 3.1 ± 0.7-fold change in miRNA-155 expression, Rp-PET 25 μM, a 7.3 ± 2.2-fold change, and Rp-PET 100 μM, a 0.79 ± 0.09-fold change (SNAP vs SNAP + Rp-PET, p < 0.05). In unstimulated cells, Rp-PET or l-NAME treatment increased miR-155 expression by 3.5 ± 0.7-fold and 5.6 ± 2.2-fold, respectively (p < 0.05).

Conclusion

In HepG2 cells, exogenous NO increases miR-155 expression, but endogenous basal NO inhibits it. Both effects are mediated via cGMP/PKG signaling. The upregulation of miR-155 by NO provides a new link between NO, inflammation, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

miRNA:

MicroRNA

NOS:

Nitric oxide synthase

eNOS:

Endothelial NOS

iNOS:

Inducible NOS

HepG2:

Hepatic epithelial (cells)

IL-8:

Interleukin-8

SNAP:

S-nitroso-N-acetylpenicillamine

SNP:

Sodium nitroprusside

sGC:

Soluble guanylyl cyclase

cGMP:

Cyclic guanosine monophosphate

PKG:

Protein kinase G

Rp-PET:

Rp-8-Bromo-beta-phenyl-1,N 2-ethenoguanosine 3′5′-cyclic monophosphorothioate sodium salt (Rp-*-Br-PET-cGMPS)

l-NAME:

N G-nitro-l-arginine methyl ester

Poly I:C:

Polyriboinosinic-polyribocytidylic acid

MAPK:

Mitogen-activated protein kinase

References

  1. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–16.

    Article  CAS  PubMed  Google Scholar 

  2. Bogdan C. Nitric oxide and the regulation of gene expression. Trends Cell Biol. 2001;11:66–75.

    Article  CAS  PubMed  Google Scholar 

  3. Fostermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37.

    Article  Google Scholar 

  4. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 2003;54:469–87.

    CAS  PubMed  Google Scholar 

  5. Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4:471–9.

    Article  CAS  PubMed  Google Scholar 

  6. Boldin MP, Baltimore D. MicroRNAs, new effectors and regulators of NF-κB. Immunol Rev. 2012;246:205–20.

    Article  PubMed  Google Scholar 

  7. Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res. 2011;157:163–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gantier MP, Sadler AJ, Williams BR. Fine-tuning of the innate immune response by microRNAs. Immmunol Cell Biol. 2007;85:458–62.

    Article  CAS  Google Scholar 

  9. Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta. 2009;1792:497–505.

    Article  CAS  PubMed  Google Scholar 

  10. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity. 2007;26:133–7.

    Article  CAS  PubMed  Google Scholar 

  11. Oglesby IK, McElvaney NG, Greene CG. MicroRNAs in inflammatory lung disease—master regulators or target practice? Resp Res. 2010;11:148–60.

    Article  Google Scholar 

  12. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, et al. Modulation of mirR-155 and miR-125b levels following lipopolysaccaride/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 2007;179:5082–9.

    Article  CAS  PubMed  Google Scholar 

  13. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA. 2007;104:1604–9.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kutty RK, Nagineni CN, Samuel W, Vijayasarathy C, Hooks JJ, Redmond TM. Inflammatory cytokines regulate microRNA-155 expression in human retinal pigment epithelial cells by activating JAK/STAT pathway. Biochem Biophys Res Comm. 2010;402:390–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Imaizumi T, Tanaka H, Tajima A, Yokono Y, Matsumiya T, Yoshida H, Tsuruga K, Aizawa-Yashiro T, Hayakari R, Inoue I, et al. IFN-γ and TNF-α synergistically induce microRNA-155 which regulates TAB/IP-10 expression in human mesangial cells. Am J Nephrol. 2010;32:462–8.

    Article  CAS  PubMed  Google Scholar 

  16. Suarez Y, Wang C, Manes TD, Pober JS. Cutting Edge: tNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184:21–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cardoso AL, Guedes JR, de Pereira Almeida L, de Pedroso Lima MC. miR-155 modulates microglia mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology. 2012;135:73–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yuhas Y, Azoulay-Alfaguter I, Berent E, Ashkenazi S. Rifampin inhibits prostaglandin E2 and arachidonic acid release in human alveolar epithelial cells. Antimicrob Agents Chemother. 2007;51:4225–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yuhas Y, Berent E, Ashkenazi S. Effect of rifampin on production of inflammatory mediators in HepG2 liver epithelial cells. Antimicrob Agents Chemother. 2011;55:5541–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yuhas Y, Kaminsky E, Mor M, Ashkenazi S. Induction of nitric oxide production in mouse macrophages by Shiga toxin. J Med Microbiol. 1996;45:97–102.

    Article  CAS  PubMed  Google Scholar 

  21. Bolander FF. The mechanisms by which nitric oxide affects mammary epithelial growth and differentiation. Biochem Biophys Res Comm. 2003;304:425–30.

    Article  CAS  PubMed  Google Scholar 

  22. Wong JC, Fiscus RR. Essential roles of the nitric oxide (no)/cGMP/protein kinase G type-Iα (PKG-Iα) signaling pathway and the atrial natriuretic peptide (ANP)/cGMP/PKG-Iα autocrine loop in promoting proliferation and cell survival of OP9 bone marrow stromal cells. J Cell Biochem. 2011;112:829–39.

    Article  CAS  PubMed  Google Scholar 

  23. Aquilar-Melero P, Ferrin G, Muntane J. Effects of nitric oxide synthase-3 overexpression on post-translational modification and cell survival in HepG2 cells. J Proteomics. 2012;75:740–55.

    Article  Google Scholar 

  24. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;3156:608–11.

    Article  Google Scholar 

  25. Giustizieri MA, Albanesi C, Scraponi C, De Pità O, Girolomoni G. Nitric oxide donors suppress chemokine production by keratinocytes in vitro and in vivo. Am J Pathol. 2002;161:1409–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Burke AJ, Sullivan FJ, Giles FJ, Glynn SA. The yin and yang of nitric oxide in cancer progression. Carcinogenesis. 2013;34:503–12.

    Article  CAS  PubMed  Google Scholar 

  27. Kotlo KU, Hesabi B, Danziger RS. Implication of microRNAs in atrial natriuretic peptide and nitric oxide signaling in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2011;39:C929–37.

    Article  Google Scholar 

  28. Sun HX, Zeng DY, Li RT, Pang RP, Yang H, Hu YL, Zhang Q, Jiang Y, Huang LY, Tang YB, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension. 2012;60:1407–14.

    Article  CAS  PubMed  Google Scholar 

  29. Yin Q, Wang X, McBride J, Fewell C. Flemington E.B-cell receptor activation induces BIC/miR-155expression through a conserved AP-1 element. J Biol Chem. 2008;283:2654–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Czyzyk-Krzeska MF, Zhang X. miR-155 at the heart of oncogenic pathways. Oncogene. 2013;33(6):677–8. doi:10.1028/onc.2013.26.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Tili E, Croce CM, Michaille JJ. miR-155: on the cross talk between inflammation and cancer. Int Rev Immunol. 2009;28:264–84.

    Article  CAS  PubMed  Google Scholar 

  32. Han ZB, Chen HY, Fan JW, Wu JY, Tang HM, Peng ZH. Up-regulation of microRNA-155 promotes cancer cell invasion and predicts poor survival of hepatocellular carcinoma following liver transplantation. J Cancer Res Clin Oncol. 2012;136:153–61.

    Article  Google Scholar 

  33. Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, Chen HX, Yuan HF, Li ZW, Shi L, et al. Hepatocellularcarcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology. 2013;57(6):2274–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eran Hornstein (Department of Molecular Genetics, Weizmann Institute of Science) for his help with the microarray analysis, and for critical review of the manuscript. We also thank Dr. Amiram Ravid (Felsenstein Medical Research Center) for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Yuhas.

Additional information

Responsible Editor: Graham R. Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuhas, Y., Berent, E. & Ashkenazi, S. Effect of nitric oxide on microRNA-155 expression in human hepatic epithelial cells. Inflamm. Res. 63, 591–596 (2014). https://doi.org/10.1007/s00011-014-0730-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0730-8

Keywords

Navigation