Skip to main content

Advertisement

Log in

Light and electron microscopic detection of inflammation-targeting liposomes encapsulating high-density colloidal gold in arthritic mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

We have previously demonstrated the efficient and time-dependent transvascular localization of Sialyl Lewis X (SLX)-liposomes to inflammatory sites, but the final target of the SLX-liposomes remained uncertain. The aim of this study was to identify the target cells of the liposomes within the inflamed joints of collagen antibody-induced arthritis (CAIA) model mice.

Methods

SLX-liposomes and unlabeled liposomes encapsulating high-density colloidal gold were administered intravenously into the caudal vein of CAIA mice on day 5 after induction of arthritis when the inflammatory score was maximal (n = 6 per group). Six hours or 24 h after liposome administration, animals were euthanized and hind limbs and ankles were excised without perfusion. After fixation, synovial tissues were examined by light microscopy after silver enhancement of colloidal gold or by transmission electron microscopy.

Results

Silver-enhanced signals were detected within the cells around E-selectin-positive blood vessels in the synovium of the SLX-liposome group. These cells were positive for the macrophage/monocyte marker F4/80 or neutrophil marker Ly-6G. Transmission electron microscopy detected the colloidal gold signals together with liposome-like structures within the phagosomes of synovial macrophages. Transmission electron microscopy and energy dispersive X-ray spectrometry could determine gold elements in the lysosomes of synovial macrophages.

Conclusions

The results of the current study demonstrate that SLX-liposomes primarily targeting E-selectin in activated endothelial cells could potentially deliver their contents into inflammatory cells around synovial blood vessels in arthritic joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simone E, Ding BS, Muzykantov V. Targeted delivery of therapeutics to endothelium. Cell Tissue Res. 2009;335(1):283–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Steeber DA, Venturi GM, Tedder TF. A new twist to the leukocyte adhesion cascade: intimate cooperation is key. Trends Immunol. 2005;26(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  3. Steeber DA, Tedder TF. Adhesion molecule cascades direct lymphocyte recirculation and leukocyte migration during inflammation. Immunol Res. 2000;22(2–3):299–317.

    Article  CAS  PubMed  Google Scholar 

  4. Szekanecz Z, Koch AE. Vascular involvement in rheumatic diseases: ‘vascular rheumatology’. Arthritis Res Therapy. 2008; 10(5).

  5. Everts M, Asgeirsdottir SA, Kok RJ, Twisk J, de Vries B, Lubberts E, Bos EJ, Werner N, Meijer DKF, Molema G. Comparison of E-selectin expression at mRNA and protein levels in murine models of inflammation. Inflamm Res. 2003;52(12):512–8.

    Article  CAS  PubMed  Google Scholar 

  6. Koch AE, Burrows JC, Haines GK, Carlos TM, Harlan JM, Leibovich SJ. Immunolocalization of endothelial and leukocyte adhesion molecules in human rheumatoid and osteoarthritic synovial tissues. Lab Invest. 1991;64(3):313–20.

    CAS  PubMed  Google Scholar 

  7. Kriegsmann J, Keyszer GM, Geiler T, Lagoo AS, Lagoodeenadayalan S, Gay RE, Gay S. Expression of E-selectin messenger RNA and protein in rheumatoid arthritis. Arthritis Rheum. 1995;38(6):750–4.

    Article  CAS  PubMed  Google Scholar 

  8. Ding BS, Dziubla T, Shuvaev VV, Muro S, Muzykantov VR. Advanced drug delivery systems that target the vascular endothelium. Mol Interv. 2006;6(2):98–112.

    Article  CAS  PubMed  Google Scholar 

  9. Barthel SR, Gavino JD, Descheny L, Dimitroff CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opinion Ther Targets. 2007;11(11):1473–91.

    Article  CAS  Google Scholar 

  10. Jubeli E, Moine L, Vergnaud-Gauduchon J, Barratt G. E-selectin as a target for drug delivery and molecular imaging. J Controlled Release. 2012;158(2):194–206.

    Article  CAS  Google Scholar 

  11. Allen TM, Hansen C, Martin F, Redemann C, Yauyoung A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives invivo. Biochim Biophys Acta. 1991;1066(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  12. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235–7.

    Article  CAS  PubMed  Google Scholar 

  13. Maruyama K, Yuda T, Okamoto A, Kojima S, Suginaka A, Iwatsuru M. Prolonged circulation time invivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochim Biophys Acta. 1992;1128(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  14. Maruyama K. PEG-immunoliposome. Biosci Rep. 2002;22(2):251–66.

    Article  CAS  PubMed  Google Scholar 

  15. Kessner S, Krause A, Rothe U, Bendas G. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells. Biochimica Et Biophysica Acta-Biomembranes. 2001;1514(2):177–90.

    Article  CAS  Google Scholar 

  16. Tan PH, Manunta M, Ardjomand N, Xue SA, Larkin DFP, Haskard DO, Taylor KM, George AJT. Antibody targeted gene transfer to endothelium. J Gene Med. 2003;5(4):311–23.

    Article  CAS  PubMed  Google Scholar 

  17. Asgeirdottir SA, Kamps J, Bakker HI, Zwiers PJ, Heeringa P, van der Weide K, van Goor H, Petersen AH, Morselt H, Moorlag HE, Steenbergen E, Kallenberg CG, Molema G. Site-specific inhibition of glomerulonephritis progression by targeted delivery of dexamethasone to glomerular endothelium. Mol Pharmacol. 2007;72(1):121–31.

    Article  Google Scholar 

  18. Everts M, Koning GA, Kok RJ, Asgeirsdottir SA, Vestweber D, Meijer DKF, Storm G, Molema G. In vitro cellular handling and in vivo targeting of E-selectin-directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium. Pharm Res. 2003;20(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  19. Stahn R, Grittner C, Zeisig R, Karsten U, Felix SB, Wenzel K. Sialyl Lewis(x)-liposomes as vehicles for site-directed, E-selectin-mediated drug transfer into activated endothelial cells. Cell Mol Life Sci. 2001;58(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  20. Hashida N, Ohguro N, Yamazaki N, Arakawa Y, Oiki E, Mashimo H, Kurokawa N, Tano Y. High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome. Exp Eye Res. 2008;86(1):138–49.

    Article  CAS  PubMed  Google Scholar 

  21. Hirai M, Hiramatsu Y, Iwashita S, Otani T, Chen L, Li YG, Okada M, Oie K, Igarashi K, Wakita H, Seno M. E-selectin targeting to visualize tumors in vivo. Contrast Media Mol Imaging. 2010;5(2):70–7.

    CAS  PubMed  Google Scholar 

  22. Hirai M, Minematsu H, Kondo N, Oie K, Igarashi K, Yamazaki N. Accumulation of liposome with Sialyl Lewis X to inflammation and tumor region: application to in vivo bio-imaging. Biochem Biophys Res Commun. 2007;353(3):553–8.

    Article  CAS  PubMed  Google Scholar 

  23. Minaguchi J, Oohashi T, Inagawa K, Ohtsuka A, Ninomiya Y. Transvascular accumulation of Sialyl Lewis X conjugated liposome in inflamed joints of collagen antibody-induced arthritic (CAIA) mice. Arch Histol Cytol. 2008;71(3):195–203.

    Article  PubMed  Google Scholar 

  24. Minematsu H, Otani T, Oohashi T, Hirai M, Oie K, Igarashi K, Ohtsuka A. Development of an active targeting liposome encapsulated with high-density colloidal gold for transmission electron microscopy. J Electron Microsc. 2011;60(1):95–9.

    Article  Google Scholar 

  25. Nishida K, Komiyama T, Miyazawa S, Shen ZN, Furumatsu T, Doi H, Yoshida A, Yamana J, Yamamura M, Ninomiya Y, Inoue H, Asahara H (2004) Histone deacetylase inhibitor suppression of auto antibody-mediated arthritis in mice via regulation of p16(INK4a) and p21(WAF1/Cip1) expression. Arthritis Rheumatism 50(10): 3365-76.

    Google Scholar 

  26. Terato K, Hasty KA, Reife RA, Cremer MA, Kang AH, Stuart JM. Induction of arthritis with monoclonal antibodies to collagen. J Immunol. 1992;148(7):2103–8.

    CAS  PubMed  Google Scholar 

  27. Bekku Y, Su WD, Hirakawa S, Fassler R, Ohtsuka A, Kang JS, Sanders J, Murakami T, Ninomiya Y, Oohashi T. Molecular cloning of Bral2, a novel brain-specific link protein, and immunohistochemical colocalization with brevican in perineuronal nets. Mol Cell Neurosci. 2003;24(1):148–59.

    Article  CAS  PubMed  Google Scholar 

  28. Bekku Y, Saito M, Moser M, Fuchigami M, Maehara A, Nakayama M, Kusachi S, Ninomiya Y, Oohashi T. Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. J Comp Neurol. 2012;520(8):1721–36.

    Article  CAS  PubMed  Google Scholar 

  29. Bekku Y, Vargova L, Goto Y, Vorisek I, Dmytrenko L, Narasaki M, Ohtsuka A, Fassler R, Ninomiya Y, Sykova E, Oohashi T. Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J Neurosci. 2010;30(8):3113–23.

    Article  CAS  PubMed  Google Scholar 

  30. Iwanaga T, Shikichi M, Kitamura H, Yanase H, Nozawa-Inoue K. Morphology and functional roles of synoviocytes in the joint. Arch Histol Cytol. 2000;63(1):17–31.

    Article  CAS  PubMed  Google Scholar 

  31. Ozdemir V, Williams-Jones B, Glatt SJ, Tsuang MT, Lohr JB, Reist C. Shifting emphasis from pharmacogenomics to theragnostics. Nat Biotechnol. 2006;24(8):942–7.

    Article  CAS  PubMed  Google Scholar 

  32. Blanco E, Hsiao A, Ruiz-Esparza GU, Landry MG, Meric-Bernstam F, Ferrari M. Molecular-targeted nanotherapies in cancer: enabling treatment specificity. Mol Oncol. 2011;5(6):492–503.

    Article  CAS  PubMed  Google Scholar 

  33. Kawakami S, Hashida M. Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab Pharmacokinet. 2007;22(3):142–51.

    Article  CAS  PubMed  Google Scholar 

  34. Peer D, Lieberman J. Special delivery: targeted therapy with small RNAs. Gene Ther. 2011;18(12):1127–33.

    Article  CAS  PubMed  Google Scholar 

  35. Komano Y, Yagi N, Onoue I, Kaneko K, Miyasaka N, Nanki T. Arthritic joint-targeting small interfering rna-encapsulated liposome: implication for treatment strategy for rheumatoid arthritis. J Pharmacol Exp Ther. 2012;340(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  36. Yonenaga N, Kenjo E, Asai T, Tsuruta A, Shimizu K, Dewa T, Nango M, Oku N. RGD-based active targeting of novel polycation liposomes bearing siRNA for cancer treatment. J Controlled Release. 2012;160(2):177–81.

    Article  CAS  Google Scholar 

  37. Zhang G, Guo BS, Wu H, Tang T, Zhang BT, Zheng LZ, He YX, Yang ZJ, Pan XH, Chow H, To K, Li YP, Li DH, Wang XL, Wang YX, Lee K, Hou ZB, Dong N, Li G, Leung K, Hung L, He FC, Zhang LQ, Qin L. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med. 2012;18(2):307–14.

    Article  PubMed  Google Scholar 

  38. McDonald DM, Thurston G, Baluk P. Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation. 1999;6(1):7–22.

    CAS  PubMed  Google Scholar 

  39. Huang SK, Martin FJ, Jay G, Vogel J, Papahadjopoulos D, Friend DS. Extravasation and Transcytosis of Liposomes in Kaposi Sarcoma-Like Dermal Lesions of Transgenic Mice Bearing the Hiv Tat Gene. Am J Pathol. 1993;143(1):10–4.

    CAS  PubMed  Google Scholar 

  40. Tuma PL, Hubbard AL. Transcytosis: crossing cellular barriers. Physiol Rev. 2003;83(3):871–932.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Matsukawa for kindly providing anti-Ly-6G antibodies, Drs. Hirohata and Yonezawa for fruitful discussions, Dr. Ogawa for assistance with animal experiments, Mr. Urata for assistance with EDS analysis, and Drs. Otani, Hirai and Mr. Minematsu (Katayama Chemical Co. Ltd., Osaka, Japan) for assistance with liposome preparations. This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 24107516) to T.O., a Grant-in-Aid for Scientific Research (No. 23592215) to K.N., and a Grant-in-Aid for Challenging Exploratory Research (No. 24659590) to Y.N. from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshitaka Oohashi.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maehara, A., Nishida, K., Furutani, M. et al. Light and electron microscopic detection of inflammation-targeting liposomes encapsulating high-density colloidal gold in arthritic mice. Inflamm. Res. 63, 139–147 (2014). https://doi.org/10.1007/s00011-013-0682-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0682-4

Keywords

Navigation