Skip to main content

Advertisement

Log in

Anti-inflammatory and anti-arthritic effects of 3-hydroxy, 2-methoxy sodium butanoate from the leaves of Clerodendrum phlomidis L.f.

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

The leaves of Clerodendrum phlomidis L.f. have been used in the Indian traditional system of medicine to treat several inflammatory diseases and arthritis. The aim of the present study was to assess the anti-inflammatory and anti-arthritic activities of the leaves of C. phlomidis and to isolate the active principle by bioactivity guided fractionation.

Materials and methods

To find the anti-inflammatory constituents from this plant, fractionations were performed with concurrent bioassays. Carrageenan-induced inflammation and Freund complete adjuvant (FCA)-induced arthritic rat models were used. The anti-inflammatory and anti-arthritic activities of the isolated compound were studied by assessing the histology of the joints, levels of lysosomal enzymes, protein-bound carbohydrates, acute phase protein, etc., in plasma, as well as by estimating the levels and expression of pro-inflammatory cytokines in the joints.

Results

Repeated fractionations and bioassays yielded a novel bioactive compound: 3-hydroxy, 2-methoxy-sodium butanoate. Treatment with this compound reduced the paw edema induced by carrageenan and FCA dose dependently. The levels of lysosomal enzymes and protein-bound carbohydrates decreased significantly upon treatment with the compound. The level of plasma acute phase protein was also decreased compared with control animals. Protein levels and mRNA expression of pro-inflammatory cytokines TNF, IL-1 and IL-6 in the joints were decreased significantly in a dose-dependent manner and the histopathological data also added evidence of the anti-arthritic property of the compound.

Conclusion

The 3-hydroxy,2-methoxy sodium butanoate isolated from plant leaves displays considerable potency in anti-inflammatory action and has a prominent anti-arthritic effect. This is the first report of this natural compound with bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–f

Similar content being viewed by others

References

  1. Yeom MJ, Lee HC, Kim GH, Lee HJ, Shim I, Oh SK, Kang SK, Hahm DH. Anti-arthritic effects of Ephedra sinica STAPF herb-acupuncture: inhibition of lipopolysaccharide-induced inflammation and adjuvant-induced polyarthritis. J Pharmacol Sci. 2006;100:41–50.

    Article  CAS  PubMed  Google Scholar 

  2. Lee S-J, Nam W-D, Na H-J, Cho Y-L, Ha K-S, Hwang J-Y, Lee H, Kim S-O, Kwon Y-G, Kim Y-M. CT20126, a novel immunosuppressant, prevents collagen-induced arthritis through the down-regulation of inflammatory gene expression by inhibiting NF-kB activation. Biochem Pharmacol. 2008;76:79–90.

    Article  CAS  PubMed  Google Scholar 

  3. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol. 1996;14:397–440.

    Article  CAS  PubMed  Google Scholar 

  4. Mythilypriya R, Shanthi P, Sachdanandam P. Therapeutic effect of Kalpaamruthaa, a herbal preparation on adjuvant induced arthritis in wistar rats. Inflammopharmacology. 2008;16:21–35.

    Article  CAS  PubMed  Google Scholar 

  5. Adou E, Miller JS, Ratovoson F, Birkinshaw C, Andriantsiferana R, Rasamison VE, Kingston DG. Antiproliferative cardenolides from Pentopetia androsaemifolia Decne. from the Madagascar rain forest. Indian J Exp Biol. 2010;48:248–257.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Balandrin NF, Kingkorn AD, Farnsworth NR. In: Balandrin AD, Kingkorn MF, editors. Human medicinal agents from plants. ACS Symposium Series, vol. 534. 1993; pp. 2–12.

  7. Matthew KM (1991) An excursion flora of Central Tamilnadu, India. Oxford-IBH, New Delhi

  8. Anonymous. The Ayurvedic pharmacopoeia of India. Part 1 (vol. III). Government of India; 2001. pp. 3–4.

  9. Katewa SS, Chaudhary BL, Jain A. Folk herbal medicines from tribal area of Rajasthan. India J Ethnopharmacol. 2004;92:41–46.

    Article  CAS  Google Scholar 

  10. Kirtikar KR, Basu BD. An ICS. Indian medicinal plants, vol. 3. Dehradun: Bishen Singh Mahendra Pal Singh; 1975. p. 1947–1948.

    Google Scholar 

  11. Patil MV, Patil DA. Ethnobotany of Nasik District, Maharashtra. New Delhi: Daya books; 2006. p. 112.

    Google Scholar 

  12. Nadkarni AK. Indian Materia Medica, I. Bombay: Popular Book Department; 1954.

    Google Scholar 

  13. Anis M, Sharma MP, Iqbal M. Herbal ethnomedicine of the Qualior forest division in Madhya Pradesh. India. Pharm Biol. 2000;38:241–253.

    CAS  Google Scholar 

  14. Pandikumar P, Chellappandian M, Mutheeswaran S, Ignacimuthu S. Consensus of local knowledge on medicinal plants among traditional healers in Mayiladumparai block of Theni District, Tamil Nadu. India J Ethnopharmacol. 2011;134:354–362.

    Article  CAS  Google Scholar 

  15. Babu NP, Pandikumar P, Ignacimuthu S. Lysosomal membrane stabilization and anti-inflammatory activity of Clerodendrum phlomidis L.f., a traditional medicinal plant. J Ethnopharmacol. 2011;135:779–785.

    Article  PubMed  Google Scholar 

  16. Winter CA, Risley EA, Nuss GW. Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc soc Exp Biol. 1962;111:544–547.

    Article  CAS  PubMed  Google Scholar 

  17. King J. The phosphohydrolases-acid and alkaline phosphatases. In: Van D, editor. Practical clinical enzymology. London: Nostrand; 1965. pp. 191–208.

  18. Delvin E, Gianetto R. The purification of lysosomal rat liver β-glucuronidase. Biochem Biophy Acta. 1970;220:93–100.

    CAS  Google Scholar 

  19. Rosenblit PD, Metzyer PP, Wick AN. Effect of streptozotocin diabetes on acid phosphatase and selected glycosidase activities of serum and various rat organs. Proc Soc Exp Biol Med. 1974;145:244–247.

    Article  CAS  PubMed  Google Scholar 

  20. Sapolsky AI, Altman RD, Howell DS. Cathepsin-D activity in normal and osteoarthritic human cartilage. Fed Proc. 1973;32:1489–1493.

    CAS  PubMed  Google Scholar 

  21. Niebes P. Determination of enzymes and degradation products of glycosaminoglycan metabolism in the serum of healthy and varicose subjects. Clin Chim Acta. 1972;42:399–408.

    Article  CAS  Google Scholar 

  22. Wagner WD. More sensitive assay discriminating galactosamine and glucosamine in mixtures. Ann Biochem. 1979;94:394–397.

    Article  CAS  Google Scholar 

  23. Warren L. The thiobarbituric acid assay of sialic acid. J Biol Chem. 1959;234:1971–1975.

    CAS  PubMed  Google Scholar 

  24. Bitter T, Muir HM. Modified uronic acid-carbazole reaction. Ann Biochem. 1962;4:330–334.

    Article  CAS  Google Scholar 

  25. Hansson LO, Lindquist L. C-reactive protein: its role in the diagnosis and follow-up of infectious diseases. Curr Opin Infec Dis. 1997;10:196–201.

    Article  Google Scholar 

  26. Ravin JA. Improved colorimetric enzymatic assay of ceruloplasmin. J Lab Clin Med. 1961;58:161–168.

    CAS  PubMed  Google Scholar 

  27. Lempert H. Determination of plasma protein. In: Varley H, editor. Practical Clinical Biochemistry. New Delhi: CBS; 1969.

    Google Scholar 

  28. Newman SL, Henson JE, Henson PM. Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J Exp Med. 1982;156:430–442.

    Article  CAS  PubMed  Google Scholar 

  29. Gutteridge JMC. Ferrous-salt-promoted damage to deoxyribose and benzoate: the increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J. 1987;243:709–714.

    CAS  PubMed  Google Scholar 

  30. Nishikimi M, Appaji N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46:849–854.

    Article  CAS  PubMed  Google Scholar 

  31. Wolf SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 1994;233:182–189.

    Google Scholar 

  32. Seekamp A, Mulligan MS, Till GO, Smith CW, Miyasaka M, Tamatani T, Todd RF 3rd, Ward PA. Role of beta 2 integrins and ICAM-1 in lung injury following ischemia-reperfusion of rat hind limbs. Am J Pathol. 1993;143:464–472.

    CAS  PubMed  Google Scholar 

  33. Smith-Oliver T, Noel LS, Stimpson SS, Yarnall DP, Connolly KM. Elevated levels of TNF in the joints of adjuvant arthritic rats. Cytokine. 1993;5:298–304.

    Article  CAS  PubMed  Google Scholar 

  34. Tarpley J, John E. Preparation and sectioning of undecalcified frozen rodent long bones and joints using a tape transfer system. J Histotechnol. 2003;26:41–56.

    Google Scholar 

  35. Darlington LG, Stone TW. Antioxidants and fatty acids in the amelioration of rheumatoid arthritis and related disorders. Br J Nutr. 2001;85:251–269.

    Article  CAS  PubMed  Google Scholar 

  36. Williams TJ. Prostaglandin E2, prostaglandin I2 and the vascular changes of inflammation. Br J Pharmacol. 1979;65:517–524.

    Article  CAS  PubMed  Google Scholar 

  37. Stuart J, Whicher JT. Tests for detecting and monitoring the acute phase response. Arch Dis Child. 1988;63:115–117.

    Article  CAS  PubMed  Google Scholar 

  38. Amos RS, Constable TJ, Crockson AP, McConkey B. Rheumatoid arthritis: relation of serum C-reactive protein and erythrocyte sedimentation rates to radiographic changes. Br Med J. 1977;1:195–197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Dawes PT, Fowler PD, Clarke S, Fisher J, Lawton A, Shadford MF. Rheumatoid arthritis: treatment which controls the C-reactive protein and erythrocyte sedimentation rate reduces radiological progression. Br J Rheumatol. 1986;25:44–49.

    Article  CAS  PubMed  Google Scholar 

  40. Combe B, Dougados M, Goupille P, Cantagrel A, Eliaou JF, Sibila J, Meyer O, Sany J, Daures JP, Dubois A. Prognostic factors for radiographic damage in early rheumatoid arthritis: a multiparameter prospective study. Arthritis Rheum. 2001;44:1736–1743.

    Article  CAS  PubMed  Google Scholar 

  41. Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973;52:741–744.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492.

    Article  PubMed  Google Scholar 

  43. De Duve C. Lysosomes in pathology and therapeutics. Abstracts of the International Symposium on Lysosomes Hakone, Japan; 1972.

  44. Carevic O, Djokic S. Comparative studies on the effect of erythromycin A and azithromycin upon extracellularly release of lysosomal enzymes in inflammatory process. Agents Action. 1988;1962(25):124–131.

    Article  Google Scholar 

  45. Fahim AT, Abd-el Fattah AA, Agha AM, Gad MZ. Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats. Pharmacol Res. 1995;3:73–79.

    Article  Google Scholar 

  46. Greenwald RA, Moy WW. Effect of oxygen-derived free radicals on hyaluronic acid. Arthr Rheum. 1980;23:455–463.

    Article  CAS  Google Scholar 

  47. Goronzy JJ, Weyand CM. Thymic function and peripheral T-cell homeostasis in rheumatoid arthritis. Trends Immunol. 2001;22:251–255.

    Article  CAS  PubMed  Google Scholar 

  48. Falgarone G, Semerano L, Rullé S, Boissier MC. Targeting lymphocyte activation to treat rheumatoid arthritis. Jt Bone Spine. 2009;76:327–332.

    Article  CAS  Google Scholar 

  49. Abreu JR, Grabiec AM, Krausz S, Spijker R, Burakowski T, Maslinski W, Eldering E, Tak PP, Reedquist AK. The presumed hyporesponsive behavior of rheumatoid arthritis T lymphocytes can be attributed to spontaneous ex vivo apoptosis rather than defects in T cell receptor signaling. J Immunol. 2008;183:621–630.

    Article  Google Scholar 

  50. Vandooren B, Noordenbos T, Ambarus C, Krausz S, Cantaert T, Yeremenko N, Boumans M, Lutter R, Tak PP, Baeten D. Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis, including psoriatic arthritis. Arthritis Rheum. 2009;60:966–975.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Fang Y, Huang W, Zhou X, Wang M, Zhong B, Peng D. Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats. J Ethnopharmacol. 2005;98:37–43.

    Article  CAS  PubMed  Google Scholar 

  52. Zangerle PF, De Groote D, Lopez M, Meuleman RJ, Vrindts Y, Fauchet F, Dehart I, Jadoul M, Radoux D, Franchimont P. Direct stimulation of cytokines (IL-1 beta, TNF-alpha, IL-6, IL-2, IFN-gamma and GM-CSF) in whole blood. II. Application to rheumatoid arthritis and osteoarthritis. Cytokine. 1992;4:568–575.

    Article  CAS  PubMed  Google Scholar 

  53. Gao J, Issekutz AC. The effect of ebselen on T-lymphocyte migration to arthritic joints and dermal inflammatory reactions in the rat. Int J Immunopharmacol. 1994;16:279–287.

    Article  CAS  PubMed  Google Scholar 

  54. Wilder RL, Lafyatis RT, Case JP, Yocum DE, Kumkumian KG, Remmers EF. Cytokines in rheumatoid arthritis and streptococcal cell wall arthritis in the rat. In: Lewis AJ, Doherty NS, Ackerman NR, editors. Therapeutic approaches to inflammatory diseases. Amsterdam: Elsevier; 1989. p. 27–32.

    Google Scholar 

Download references

Acknowledgments

The financial assistance given by Council of Scientific and Industrial Research (No. 8/293(30)/2008 EMR-I), New Delhi to N.P.B. is gratefully acknowledged. We also thank Entomology Research Institute for additional financial assistance. The authors also thank the Dean, Tamil Nadu Veterinary University, Chennai for histopathological analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ignacimuthu.

Additional information

Responsible Editor: Mauro Teixeira.

Electronic supplementary material

Below is the link to the electronic supplementary material. These data include the IR, 1H and 13C NMR spectra of 3-hydroxy, 2-methoxy-sodium butanoate in supplementary Figures S1, S2 and S3, respectively. The results of 2D NMR and EI–MS studies of this compound are given in supplementary Figures S4, S5 and S6, respectively.

Supplementary material 1 (DOC 256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash Babu, N., Saravanan, S., Pandikumar, P. et al. Anti-inflammatory and anti-arthritic effects of 3-hydroxy, 2-methoxy sodium butanoate from the leaves of Clerodendrum phlomidis L.f.. Inflamm. Res. 63, 127–138 (2014). https://doi.org/10.1007/s00011-013-0681-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0681-5

Keywords

Navigation