Skip to main content

Suppression of Toll-like receptor 4 activation by endogenous oxidized phosphatidylcholine, KOdiA-PC by inhibiting LPS binding to MD2

Abstract

Objective

Activation of Toll-like receptor 4 (TLR4) triggers immune and inflammatory events by sensing endogenous danger signals as well as invading pathogens and contributes to the development of chronic inflammatory diseases. In this study, we investigated effect of 1-palmitoyl-2-(5-keto-6-octenedioyl)-sn-glycero-3-phosphocholine (KOdiA-PC), an oxidized phosphatidylcholine, on TLR4 activation and the underlying regulatory mechanism.

Methods

RAW264.7 macrophages were used for the study. The levels of TNF-α, IFN-β, and COX-2 mRNA and protein were determined by quantitative PCR and ELISA, respectively. Activation of TLR4-signaling was examined by immunoblot and luciferase reporter assays. In vitro binding assay was performed to determine LPS binding to MD2. Macrophage migration was analyzed using a transwell-culture system.

Results

KOdiA-PC prevented the activation of TLR4-signaling components including ERK, JNK, p38, NF-κB, and IRF3 leading to decrease of TNF-α, IFN-β, and COX-2 expression. In vitro binding assay revealed that KOdiA-PC interrupted LPS binding to MD2, a TLR4 co-receptor. Consistently, KOdiA-PC suppressed LPS-induced macrophage migration.

Conclusion

The results demonstrate that KOdiA-PC can modulate TLR4 activation by regulating ligand-receptor interaction. Therefore, endogenously generated, oxidized phospholipids may play a role in resolving inflammation by terminating TLR activation and macrophage recruitment to the inflamed site.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191–5.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Lee JY, Zhao L, Hwang DH. Modulation of pattern recognition receptor-mediated inflammation and risk of chronic diseases by dietary fatty acids. Nutr Rev. 2010;68:38–61.

    PubMed  Article  Google Scholar 

  4. 4.

    Lee JY, Ye J, Gao Z, Youn HS, Lee WH, Zhao L, et al. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem. 2003;278:37041–51.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015–25.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Eligini S, Brambilla M, Banfi C, Camera M, Sironi L, Barbieri SS, et al. Oxidized phospholipids inhibit cyclooxygenase-2 in human macrophages via nuclear factor-kappaB/IkappaB- and ERK2-dependent mechanisms. Cardiovasc Res. 2002;55:406–15.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Miller YI, Viriyakosol S, Binder CJ, Feramisco JR, Kirkland TN, Witztum JL. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem. 2003;278:1561–8.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Kim YS, Park ZY, Kim SY, Jeong E, Lee JY. Alteration of Toll-like receptor 4 activation by 4-hydroxy-2-nonenal mediated by the suppression of receptor homodimerization. Chem Biol Interact. 2009;182:59–66.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta. 2007;1772:718–36.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stockl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal. 2010;12:1009–59.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol. 2002;22:101–7.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Subbanagounder G, Leitinger N, Schwenke DC, Wong JW, Lee H, Rizza C, et al. Determinants of bioactivity of oxidized phospholipids. Specific oxidized fatty acyl groups at the sn-2 position. Arterioscler Thromb Vasc Biol. 2000;20:2248–54.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M, et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem. 2002;277:38517–23.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Watson AD, Leitinger N, Navab M, Faull KF, Horkko S, Witztum JL, et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997;272:13597–607.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Berliner JA, Watson AD. A role for oxidized phospholipids in atherosclerosis. N Engl J Med. 2005;353:9–11.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Bochkov VN, Leitinger N. Anti-inflammatory properties of lipid oxidation products. J Mol Med (Berl). 2003;81:613–26.

    Article  CAS  Google Scholar 

  17. 17.

    Walton KA, Gugiu BG, Thomas M, Basseri RJ, Eliav DR, Salomon RG, et al. A role for neutral sphingomyelinase activation in the inhibition of LPS action by phospholipid oxidation products. J Lipid Res. 2006;47:1967–74.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Joung SM, Park ZY, Rani S, Takeuchi O, Akira S, Lee JY. Akt contributes to activation of the TRIF-dependent signaling pathways of TLRs by interacting with TANK-binding kinase 1. J Immunol. 2011;186:499–507.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Youn HS, Kim YS, Park ZY, Kim SY, Choi NY, Joung SM, et al. Sulforaphane suppresses oligomerization of TLR4 in a thiol-dependent manner. J Immunol. 2010;184:411–9.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Kim SY, Choi YJ, Joung SM, Lee BH, Jung YS, Lee JY. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor. Immunology. 2009;129:516–24.

    PubMed  Article  Google Scholar 

  21. 21.

    Mancek-Keber M, Gradisar H, Inigo Pestana M, Martinez de Tejada G, Jerala R. Free thiol group of MD-2 as the target for inhibition of the lipopolysaccharide-induced cell activation. J Biol Chem. 2009;284:19493–500.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Gradisar H, Keber MM, Pristovsek P, Jerala R. MD-2 as the target of curcumin in the inhibition of response to LPS. J Leukoc Biol. 2007;82:968–74.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Peluso MR, Miranda CL, Hobbs DJ, Proteau RR, Stevens JF. Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in silico binding to myeloid differentiation protein-2 (MD-2). Planta Med. 2010;76:1536–43.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Roh E, Lee HS, Kwak JA, Hong JT, Nam SY, Jung SH, et al. MD-2 as the target of nonlipid chalcone in the inhibition of endotoxin LPS-induced TLR4 activity. J Infect Dis. 2011;203:1012–20.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature. 2002;419:77–81.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Walton KA, Cole AL, Yeh M, Subbanagounder G, Krutzik SR, Modlin RL, et al. Specific phospholipid oxidation products inhibit ligand activation of Toll-like receptors 4 and 2. Arterioscler Thromb Vasc Biol. 2003;23:1197–203.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Erridge C, Kennedy S, Spickett CM, Webb DJ. Oxidized phospholipid inhibition of Toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J Biol Chem. 2008;283:24748–59.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Wu R, Shen G, Morris R, Patnaik M, Peter JB. Elevated autoantibodies against oxidized palmitoyl arachidonoyl phosphocholine in patients with hypertension and myocardial infarction. J Autoimmun. 2005;24:353–60.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Doria A, Shoenfeld Y, Wu R, Gambari PF, Puato M, Ghirardello A, et al. Risk factors for subclinical atherosclerosis in a prospective cohort of patients with systemic lupus erythematosus. Ann Rheum Dis. 2003;62:1071–7.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Ikura Y, Ohsawa M, Suekane T, Fukushima H, Itabe H, Jomura H, et al. Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: impact on disease progression. Hepatology. 2006;43:506–14.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Yoshimi N, Ikura Y, Sugama Y, Kayo S, Ohsawa M, Yamamoto S, et al. Oxidized phosphatidylcholine in alveolar macrophages in idiopathic interstitial pneumonias. Lung. 2005;183:109–21.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Lee CH. Resolvins as new fascinating drug candidates for inflammatory diseases. Arch Pharm Res. 2012;35:3–7.

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (No. 1120120), a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2012R1A1A3004541), and the Research Fund, 2012 of the Catholic University of Korea. The authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joo Young Lee.

Additional information

Responsible Editor: Graham Wallace.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, M.J., Choi, N.Y., Koo, J.E. et al. Suppression of Toll-like receptor 4 activation by endogenous oxidized phosphatidylcholine, KOdiA-PC by inhibiting LPS binding to MD2. Inflamm. Res. 62, 571–580 (2013). https://doi.org/10.1007/s00011-013-0609-0

Download citation

Keywords

  • MD2
  • Toll-like receptor 4
  • Oxidized phosphatidylcholine
  • Oxidized phospholipids