Inflammation Research

, Volume 62, Issue 5, pp 489–498 | Cite as

Dietary component p-coumaric acid suppresses monosodium urate crystal-induced inflammation in rats

Original Research Paper

Abstract

Objective

This study was conducted to evaluate the effect of p-Coumaric acid, a common dietary phenol, on monosodium urate crystal-induced inflammation in rats—an experimental model for acute gouty arthritis.

Methods

Paw edema, levels/activities of lysosomal enzymes, lipid peroxidation, enzymic antioxidants and a histopathological examination of ankle joints were evaluated in control and monosodium urate crystal-induced inflamed rats. Further, an acetic acid-induced writhing test and tail immersion test were employed to screen for analgesic effects, yeast-induced pyrexia was used to test for antipyretic effects, and gastric ulceration was used to evaluate ulcerogenic effects.

Results

A significant increase in paw edema, lysosomal enzyme activity and lipid peroxidation levels was observed in monosodium urate crystal-induced rats, whereas activities of enzymic antioxidants were found to be decreased when compared to control rats. Nevertheless, treatment with p-Coumaric acid (100 mg/kg b.wt) significantly reverted the altered physical and biochemical parameters back to near normal levels, as evidenced by the histopathology of the ankle joints. In addition, p-Coumaric acid also exhibited potent analgesic and antipyretic effects devoid of any adverse impact on gastric mucosa.

Conclusion

The results of this study reveal the potential anti-inflammatory effect of p-Coumaric acid against monosodium urate crystal-induced inflammation in rats.

Keywords

p-Coumaric acid Gout Lysosomal enzymes Analgesic Antipyretic Indomethacin 

Notes

Conflict of interest

The authors have declared no conflicts of interests.

References

  1. 1.
    Cronstein BN, Terkeltaub R. The inflammatory process of gout and its treatment. Arthr Res Ther. 2006;8(Suppl 1):S3.CrossRefGoogle Scholar
  2. 2.
    Terkeltaub R, Baird S, Sears P, Santiago R, Boisvert W. The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of neutrophilic inflammation in the air pouch model of acute urate crystal-induced gouty synovitis. Arthr Rheum. 1998;41(5):900–9.CrossRefGoogle Scholar
  3. 3.
    Akahoshi T, Murakami Y, Kitasato H. Recent advances in crystal-induced acute inflammation. Curr Opin Rheumatol. 2007;19(2):146–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Bieber JD, Terkeltaub RA. Gout: on the brink of novel therapeutic options for an ancient disease. Arthr Rheum. 2004;50(8):2400–14.CrossRefGoogle Scholar
  5. 5.
    Stocker R. Dietary and pharmacological antioxidants in atherosclerosis. Curr Opin Lipidol. 1999;10(6):589–97.PubMedCrossRefGoogle Scholar
  6. 6.
    Seo YK, Kim SJ, Boo YC, Baek JH, Lee SH, Koh JS. Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin Exp Dermatol. 2011;36(3):260–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Kong CS, Jeong CH, Choi JS, Kim KJ, Jeong JW. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother Res. 2012;. doi:10.1002/ptr.4718.Google Scholar
  8. 8.
    Luceri C, Giannini L, Lodovici M, Antonucci E, Abbate R, Masini E, Dolara P. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br J Nutr. 2007;97:458–63.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamaguchi M, Weitzmann MN. The bone anabolic carotenoid p-hydroxycinnamic acid promotes osteoblast mineralization and suppresses osteoclast differentiation by antagonizing NF-κB activation. Int J Mol Med. 2012;30(3):708–12.PubMedGoogle Scholar
  10. 10.
    Zang LY, Cosma G, Gardner H, Shi X, Castranova V, Vallyathan V. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. Am J Physiol Cell Physiol. 2000;279:954–60.Google Scholar
  11. 11.
    Lodovici M, Guglielmi F, Meoni M, Dolara P. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxicol. 2001;39(12):1205–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Abdel-Wahab MH, El-Mahdy MA, Abd-Ellah MF, Helal GK, Khalifa F, Hamada FM. Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat’s heart. Pharmacol Res. 2003;48:461–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem. 2008;19(9):587–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Lee HS, Kim YD, Na BR, Kim HR, Choi EJ, Han WC, Choi HK, Lee SH, Jun CD. Phytocomponent p-hydroxycinnamic acid inhibits T-cell activation by modulation of protein kinase C-θ-dependent pathway. Int Immunopharmacol. 2012;12(1):131–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Hole AS, Grimmer S, Jensen MR, Sahlstrøm S. Synergistic and suppressive effects of dietary phenolic acids and other phytochemicals from cereal extracts on nuclear factor kappa B activity. Food Chem. 2012;133:969–77.CrossRefGoogle Scholar
  16. 16.
    Denko CW, Whithouse MW. Experimental inflammation induced by naturally occurring microcrystalline calcium salts. J Rheumatol. 1976;3(1):54–62.PubMedGoogle Scholar
  17. 17.
    King J. The hydrolases-acid and alkaline phosphatases. In: Van D, editor. Practical clinical enzymology. London: Nostrand Company Limited; 1965. p. 191–208.Google Scholar
  18. 18.
    Kawai Y, Anno K. Mucopolysaccharide-degrading enzymes from the liver of the squid, Ommastrephes sloanipacificus. I. Hyaluronidase. Biochim Biophys Acta. 1971;242:428–36.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenblit PD, Metzger RP, Wick AN. Effect of streptozotocin diabetes on acid phosphatase and selected glycosidase activities of serum and various rat organs. Proc Soc Exp Biol Med. 1974;145(1):244–8.PubMedGoogle Scholar
  20. 20.
    Maruhn D. Rapid colorimetric assay of beta-galactosidase and N-acetyl-beta-glucosaminidase in human urine. Clin Chim Acta. 1976;73(3):453–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Biber J, Stieger B, Haase W, Murer H. A high yield preparation for rat kidney brush border membranes. Different behavior of lysosomal markers. Biochim Biophys Acta. 1981;647(2):169–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMedGoogle Scholar
  23. 23.
    Ledwozyw A, Michalak J, Stepień A, Kadziolka A. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation during human atherosclerosis. Clin Chim Acta. 1986;155(3):275–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Högberg J, Larson RE, Kristoferson A, Orrenius S. NADPH-dependent reductase solubilized from microsomes by peroxidation and its activity. Biochem Biophys Res Commun. 1974;56(3):836–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74.PubMedCrossRefGoogle Scholar
  26. 26.
    Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389–94.PubMedCrossRefGoogle Scholar
  27. 27.
    Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Collier HO, Dinneen LC, Johnson CA, Schneider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother. 1968;32:295–310.PubMedCrossRefGoogle Scholar
  29. 29.
    Janssen PA, Niemegeers CJ, Dony JG. The inhibitory effect of fentanyl and other morphine-like analgesics on the warm water induced tail withdrawal reflex in rats. Arzneimittelforschung. 1963;13:502–7.PubMedGoogle Scholar
  30. 30.
    Mukherjee PK, Das J, Saha K, Giri SN, Pal M, Saha BP. Antipyretic activity of Nelumbo nucifera rhizome extract. Indian J Exp Biol. 1996;34(3):275–6.PubMedGoogle Scholar
  31. 31.
    Cashin CH, Dawson W, Kitchen EA. The pharmacology of benoxaprofen (2-[4-chlorophenyl]-alpha-methyl-5-benzoxazole acetic acid), LRCL 3794, a new compound with antiinflammatory activity apparently unrelated to inhibition of prostaglandin synthesis. J Pharm Pharmacol. 1977;29(6):330–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Margalit A, Duffin KL, Shaffer AF, Gregory SA, Isakson PC. Altered arachidonic acid metabolism in urate crystal induced inflammation. Inflammation. 1997;21(2):205–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Zurier RB, Hoffstein S, Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes. I. Effect of cyclic nucleotides and colchicine. J Cell Biol. 1973;58(1):27–41.PubMedCrossRefGoogle Scholar
  34. 34.
    Desaulniers P, Fernandes M, Gilbert C, Bourgoin SG, Naccache PH. Crystal-induced neutrophil activation. VII. Involvement of Syk in the responses to monosodium urate crystals. J Leucoc Biol. 2001;70(4):659–68.Google Scholar
  35. 35.
    Bitensky L. Lysosomes and the connective tissue diseases. J Clin Pathol Suppl (R Coll Pathol). 1978;12:105–16.CrossRefGoogle Scholar
  36. 36.
    Pragasam SJ, Murunikkara V, Sabina EP, Rasool M. Ameliorative effect of p-coumaric acid, a common dietary phenol, on adjuvant-induced arthritis in rats. Rheumatol Int. 2013;33(2):325–34. PubMedCrossRefGoogle Scholar
  37. 37.
    Kitchen EA, Boot JR, Dawson W. Chemotactic activity of thromboxane B2, prostaglandins and their metabolites for polymorphonuclear leucocytes. Prostaglandins. 1978;16(2):239–44.PubMedCrossRefGoogle Scholar
  38. 38.
    Simchowitz L, Atkinson JP, Spilberg I. Stimulation of the respiratory burst in human neutrophils by crystal phagocytosis. Arthr Rheum. 1982;25(2):181–8.CrossRefGoogle Scholar
  39. 39.
    Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Jt Bone Spine. 2007;74(4):324–9.CrossRefGoogle Scholar
  40. 40.
    Sabina EP, Rasool M, Mathew L, Ezilrani P, Indu H. 6-Shogaol inhibits monosodium urate crystal-induced inflammation-an in vivo and in vitro study. Food Chem Toxicol. 2010;48(1):229–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee YT, Don MJ, Liao CH, Chiou HW, Chen CF, Ho LK. Effects of phenolic acid esters and amides on stimulus-induced reactive oxygen species production in human neutrophils. Clin Chim Acta. 2005;352:135–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Yeh CT, Ching LC, Yen GC. Inducing gene expression of cardiac antioxidant enzymes by dietary phenolic acids in rats. J Nutr Biochem. 2009;20(3):163–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Dirig DM, Isakson PC, Yaksh TL. Effect of COX-1 and COX-2 inhibition on induction and maintenance of carageenan-evoked thermal hyperalgesia in rats. J Pharmacol Exp Ther. 1998;285(3):1031–8.PubMedGoogle Scholar
  44. 44.
    Aronoff DM, Neilson EG. Antipyretics: mechanisms of action and clinical use in fever suppression. Am J Med. 2001;111:304–15.PubMedCrossRefGoogle Scholar
  45. 45.
    Rasool M, Varalakshmi P. Supressive effect of Withania somnifera root powder on experimental gouty arthritis: an in vivo and in vitro study. Chem Biol Interact. 2006;164(3):174–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Takeuchi K. Pathogenesis of NSAID-induced gastric damage: importance of cyclooxygenase inhibition and gastric hypermobility. World J Gastroenterol. 2012;18:2147–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Siddaraju MN, Dharmesh SM. Inhibition of gastric H(+), K(+)-ATPase and Helicobacter pylori growth by phenolic antioxidants of Curcuma amada. J Agric Food Chem. 2007;55:7377–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Immunopathology Lab, School of Bio Sciences and TechnologyVIT UniversityVelloreIndia

Personalised recommendations