Inflammation Research

, Volume 62, Issue 5, pp 461–469 | Cite as

Cucurbitacin E exhibits anti-inflammatory effect in RAW 264.7 cells via suppression of NF-κB nuclear translocation

  • Jing Qiao
  • Li-hui Xu
  • Jian He
  • Dong-yun Ouyang
  • Xian-hui He
Original Research Paper

Abstract

Objective

Cucurbitacin E (CuE), a triterpenoid compound isolated from Cucurbitaceae plants, possesses a wide range of biological activities including anti-inflammatory properties. The present study aimed to investigate the anti-inflammatory effect of CuE and the underlying mechanism of action.

Methods

The anti-inflammatory effect of CuE was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Cell proliferation was assessed using a modified MTT assay. Cell cycle distribution was analyzed by propidium iodide staining. The actin cytoskeleton was examined by immunofluorescent staining. The expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β was determined by intracellular cytokine staining. G-actin level and nuclear factor (NF)-κB nuclear translocation were detected by immunoblotting.

Results

CuE inhibited cell proliferation and induced cell cycle arrest at G2/M phase in RAW 264.7 cells. CuE also suppressed LPS-induced cell spreading and pseudopodia formation. These effects were associated with decreased G-actin level and severe actin aggregation. Moreover, CuE significantly inhibited both TNF-α and IL-1β production in LPS-stimulated RAW 264.7 cells. This was likely mediated by suppressing LPS-induced nuclear translocation of NF-κB, a critical transcription factor responsible for pro-inflammatory cytokine expression.

Conclusion

CuE displayed anti-inflammatory effects through suppression of NF-κB nuclear translocation leading to a decreased expression of TNF-α and IL-1β in LPS-stimulated RAW 264.7 cells.

Keywords

Cucurbitacin E RAW 264.7 cells Lipopolysaccharides Actin cytoskeleton NF-κB 

Notes

Acknowledgments

This work is supported by grants from the National Natural Science Foundation of China (No.81173604), the Specialized Research Program of “Twelfth Five-Year Plan” of China (No.2011ZX09307-303-03), and the Fundamental Research Funds for the Central Universities (No.21612411).

References

  1. 1.
    Chan KT, Li K, Liu SL, Chu KH, Toh M, Xie WD. Cucurbitacin B inhibits STAT3 and the Raf/MEK/ERK pathway in leukemia cell line K562. Cancer Lett. 2010;289:46–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Dong Y, Lu B, Zhang X, Zhang J, Lai L, Li D, Wu Y, Song Y, Luo J, Pang X, Yi Z, Liu M. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis. 2010;31:2097–104.PubMedCrossRefGoogle Scholar
  3. 3.
    Peters RR, Farias MR, Ribeiro-do-Valle RM. Anti-inflammatory and analgesic effects of cucurbitacins from Wilbrandia ebracteata. Planta Med. 1997;63:525–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Duncan KL, Duncan MD, Alley MC, Sausville EA. Cucurbitacin E-induced disruption of the actin and vimentin cytoskeleton in prostate carcinoma cells. Biochem Pharmacol. 1996;52:1553–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Abdelwahab SI, Hassan LE, Sirat HM, Yagi SM, Koko WS, Mohan S, Taha MM, Ahmad S, Chuen CS, Narrima P, Rais MM, Hadi AH. Anti-inflammatory activities of cucurbitacin E isolated from Citrullus lanatus var. citroides: role of reactive nitrogen species and cyclooxygenase enzyme inhibition. Fitoterapia. 2011;82:1190–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev. 2008;7:83–105.PubMedCrossRefGoogle Scholar
  7. 7.
    Sen R, Baltimore D. Inducibility of K immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell. 1986;47:921–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Karin M, Staudt L. NF-κB a network hub controlling immunity, inflammation, and cancer: a subject collection from Cold Spring Harbor perspectives in biology. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, NY; 2010. viii, p 271.Google Scholar
  9. 9.
    Karin M, Greten FR. NF kappa B: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5:749–59.PubMedCrossRefGoogle Scholar
  10. 10.
    Liou H-C. NF-κB/Rel transcription factor family. Georgetown, Tex. New York: Landes Bioscience/Eurekah.com, Springer Science+Business Media, 2006. p 185.Google Scholar
  11. 11.
    Jin HR, Jin X, Dat NT, Lee JJ. Cucurbitacin B suppresses the transactivation activity of RelA/p65. J Cell Biochem. 2011;112:1643–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang Y, Ouyang D, Xu L, Ji Y, Zha Q, Cai J, He X. Cucurbitacin B induces rapid depletion of the G-actin pool through reactive oxygen species-dependent actin aggregation in melanoma cells. Acta Biochim Biophys Sin. 2011;43:556–67.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang YT, Ouyang DY, Xu LH, Ji YH, Zha QB, Cai JY, He XH. Cucurbitacin B induces rapid depletion of the G-actin pool through reactive oxygen species-dependent actin aggregation in melanoma cells. Acta Biochim Biophys Sin. 2011;43:556–67.PubMedCrossRefGoogle Scholar
  14. 14.
    Ouyang D, Zhang Y, Xu L, Li J, Zha Q, He X. Histone deacetylase inhibitor valproic acid sensitizes B16F10 melanoma cells to cucurbitacin B treatment. Acta Biochim Biophys Sin. 2011;43:487–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Duncan MD, Duncan KL. Cucurbitacin E targets proliferating endothelia. J Surg Res. 1997;69:55–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Jayaprakasam B, Seeram NP, Nair MG. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett. 2003;189:11–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Ziegler-Heitbrock H, Sternsdorf T, Liese J, Belohradsky B, Weber C, Wedel A, Schreck R, Bauerle P, Strobel M. Pyrrolidine dithiocarbamate inhibits NF-κB mobilization and TNF production in human monocytes. J Immunol. 1993;151:6986–93.PubMedGoogle Scholar
  18. 18.
    Varfolomeev EE, Ashkenazi A. Tumor necrosis factor: an apoptosis JuNKie? Cell. 2004;116:491–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Nakashima S, Matsuda H, Kurume A, Oda Y, Nakamura S, Yamashita M, Yoshikawa M. Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells. Bioorg Med Chem Lett. 2010;20:2994–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Sorensen PM, Iacob RE, Fritzsche M, Engen JR, Brieher WM, Charras G. Eggert US. ACS Chem Biol: The natural product cucurbitacin E inhibits depolymerization of actin filaments; 2012.Google Scholar
  21. 21.
    Momma K, Masuzawa Y, Nakai N, Chujo M, Murakami A, Kioka N, Kiyama Y, Akita T, Nagao M. Direct interaction of Cucurbitacin E isolated from Alsomitra macrocarpa to actin filament. Cytotechnology. 2008;56:33–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Huang WW, Yang JS, Lin MW, Chen PY, Chiou SM, Chueh FS, Lan YH, Pai SJ, Tsuzuki M, Ho WJ, Chung JG. Cucurbitacin E induces G(2)/M phase arrest through STAT3/p53/p21 signaling and provokes apoptosis via Fas/CD95 and mitochondria-dependent pathways in human bladder cancer T24 cells. Evid Based Complement Alternat Med. 2012;2012:952762.PubMedGoogle Scholar
  23. 23.
    Li Y, Wang R, Ma E, Deng Y, Wang X, Xiao J, Jing Y. The induction of G2/M cell-cycle arrest and apoptosis by cucurbitacin E is associated with increased phosphorylation of eIF2α in leukemia cells. Anticancer Drugs. 2010;21:389–400.PubMedCrossRefGoogle Scholar
  24. 24.
    Beutler B, Cerami A. The biology of cachectin/TNF–a primary mediator of the host response. Ann Rev Immunol. 1989;7:625–55.CrossRefGoogle Scholar
  25. 25.
    Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cell Mol Life Sci. 2008;65:2964–78.PubMedCrossRefGoogle Scholar
  26. 26.
    Yang SK, Wang YC, Chao CC, Chuang YJ, Lan CY, Chen BS. Dynamic cross-talk analysis among TNF-R, TLR-4 and IL-1R signalings in TNF-α-induced inflammatory responses. BMC Med Genomics. 2010;3:19.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee KC, Chang HH, Chung YH, Lee TY. Andrographolide acts as an anti-inflammatory agent in LPS-stimulated RAW264.7 macrophages by inhibiting STAT3-mediated suppression of the NF-kappaB pathway. J Ethnopharmacol. 2011;135:678–84.PubMedCrossRefGoogle Scholar
  28. 28.
    O’Neill LAJ, Kaltschmidt C. NF-kB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 1997;20:252–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Shrum CK, Defrancisco D, Meffert MK. Stimulated nuclear translocation of NF-κB and shuttling differentially depend on dynein and the dynactin complex. Proc Natl Acad Sci USA. 2009;106:2647–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosette C, Karin M. Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-kappa B. J Cell Biol. 1995;128:1111–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Banan A, Keshavarzian A, Zhang L, Shaikh M, Forsyth C, Tang Y, Fields J. NF-κB activation as a key mechanism in ethanol-induced disruption of the F-actin cytoskeleton and monolayer barrier integrity in intestinal epithelium. Alcohol. 2007;41:447–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Jing Qiao
    • 1
  • Li-hui Xu
    • 2
  • Jian He
    • 1
  • Dong-yun Ouyang
    • 1
  • Xian-hui He
    • 1
  1. 1.Department of Immunobiology, Institute of Tissue Transplantation and ImmunologyJinan UniversityGuangzhouChina
  2. 2.Department of Cell BiologyJinan UniversityGuangzhouChina

Personalised recommendations