Skip to main content

Advertisement

Log in

Blockage of nerve growth factor modulates T cell responses and inhibits allergic inflammation in a mouse model of asthma

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Blockage of nerve growth factor (NGF) by anti-NGF antibodies can inhibit allergic airway hyper-responsiveness in mice. This study was aimed at determining the mechanisms underlying the action of anti-NGF in vivo.

Methods

BALB/c mice were sensitized with ovalbumin (OVA) and treated with anti-NGF. At 1 day after the last challenge, their airway responsiveness and inflammation were examined and the levels of cytokine and transcription factor mRNA transcripts in the lungs and cytokines in the bronchoalveolar lavage fluid were determined. The frequency of different functional T cells and the levels of serum OVA-specific antibodies were measured.

Results

OVA challenge induced severe airway resistance, inflammation, higher levels of IL-4, TNFα, IL-17A, TGFβ, GATA-3 and RORγT expression and increased Th2 and Th17 cells and IgE responses, but decreased IFNγ and IL-10 responses, T-bet and Foxp3 expression and Th1 and Tregs. Treatment with anti-NGF significantly reduced allergic airway resistance and inflammation, up-regulated IFNγ, IL-10, TGFβ, T-bet, and Foxp3 expression, increased Th1 and Tregs, but down-regulated IL-4, TNFα, IL-17A, RORγT and GATA-3 expression and reduced Th2 and Th17 cells, accompanied by increased serum IgG2a.

Conclusions

Anti-NGF inhibits allergic airway inflammation by modulating the balance of pro- and anti-asthmatic T cell responses in the lungs of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AHR:

Airway hyperresponsiveness

APC:

Antigen presenting cells

BALF:

Bronchoalveolar lavage fluid

H&E:

Hematoxylin and eosin

HRP:

Horseradish peroxidase

NGF:

Nerve growth factor

OVA:

Ovalbumin

TMB:

Tetramethylbenzidine

WBC:

White blood cells

References

  1. Holgate ST, Arshad HS, Roberts GC, Howarth PH, Thurner P, Davies DE. A new look at the pathogenesis of asthma. Clin Sci (Lond). 2009;118:439–50.

    Article  Google Scholar 

  2. Westergren-Thorsson G, Larsen K, Nihlberg K, Andersson-Sjoland A, Hallgren O, Marko-Varga G, et al. Pathological airway remodelling in inflammation. Clin Respir J. 2010;4(Suppl 1):1–8.

    Article  PubMed  CAS  Google Scholar 

  3. Malik G, Tagiyeva N, Aucott L, McNeill G, Turner SW. Changing trends in asthma in 9–12 year olds between 1964 and 2009. Arch Dis Child. 2010;96:227–31.

    Article  PubMed  Google Scholar 

  4. Henneberger PK, Redlich CA, Callahan DB, Harber P, Lemiere C, Martin J, et al. An official American thoracic society statement: work-exacerbated asthma. Am J Respir Crit Care Med. 2011;184:368–78.

    Article  PubMed  Google Scholar 

  5. Dong L, Chen M, Zhang Q, Li LZ, Xu XQ, Xiao W. T-bet/GATA-3 ratio is a surrogate measure of Th1/Th2 cytokine profiles and may be novel targets for CpG ODN treatment in asthma patients. Chin Med J (Engl). 2006;119:1396–9.

    CAS  Google Scholar 

  6. Josefowicz SZ, Rudensky A. Control of regulatory T cell lineage commitment and maintenance. Immunity. 2009;30:616–25.

    Article  PubMed  CAS  Google Scholar 

  7. Kawaguchi M, Kokubu F, Fujita J, Huang SK, Hizawa N. Role of interleukin-17F in asthma. Inflamm Allergy Drug Targets. 2009;8:383–9.

    PubMed  CAS  Google Scholar 

  8. Robinson DS. Regulatory T cells and asthma. Clin Exp Allergy. 2009;39:1314–23.

    Article  PubMed  CAS  Google Scholar 

  9. Commins SP, Borish L, Steinke JW. Immunologic messenger molecules: cytokines, interferons, and chemokines. J Allergy Clin Immunol. 2009;125:S53–72.

    Article  PubMed  Google Scholar 

  10. Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med. 2008;178:1023–32.

    Article  PubMed  CAS  Google Scholar 

  11. Monteseirin J. Neutrophils and asthma. J Investig Allergol Clin Immunol. 2009;19:340–54.

    PubMed  CAS  Google Scholar 

  12. Ohkawara Y, Lei XF, Stampfli MR, Marshall JS, Xing Z, Jordana M. Cytokine and eosinophil responses in the lung, peripheral blood, and bone marrow compartments in a murine model of allergen-induced airways inflammation. Am J Respir Cell Mol Biol. 1997;16:510–20.

    PubMed  CAS  Google Scholar 

  13. Ishiura Y, Fujimura M, Nobata K, Myou S, Oribe Y, Abo M, et al. Th2 cytokine inhibition and cough in asthmatic and bronchitic patients. Ann Med. 2004;36:623–9.

    Article  PubMed  CAS  Google Scholar 

  14. Park SW, Jangm HK, An MH, Min JW, Jang AS, Lee JH, et al. Interleukin-13 and interleukin-5 in induced sputum of eosinophilic bronchitis: comparison with asthma. Chest. 2005;128:1921–7.

    Article  PubMed  CAS  Google Scholar 

  15. Wilson RH, Whitehead GS, Nakano H, Free ME, Kolls JK, Cook DN. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am J Respir Crit Care Med. 2009;180:720–30.

    Article  PubMed  CAS  Google Scholar 

  16. Truyen E, Coteur L, Dilissen E, Overbergh L, Dupont LJ, Ceuppens JL, et al. Evaluation of airway inflammation by quantitative Th1/Th2 cytokine mRNA measurement in sputum of asthma patients. Thorax. 2006;61:202–8.

    Article  PubMed  CAS  Google Scholar 

  17. Matsumoto K, Inoue H, Fukuyama S, Kan OK, Eguchi-Tsuda M, Matsumoto T, et al. Frequency of Foxp3+ CD4CD25+ T cells is associated with the phenotypes of allergic asthma. Respirology. 2009;14:187–94.

    Article  PubMed  Google Scholar 

  18. Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy. J Allergy Clin Immunol. 2007;119:780–91.

    Article  PubMed  CAS  Google Scholar 

  19. Arredondo LR, Deng C, Ratts RB, Lovett-Racke AE, Holtzman DM, Racke MK. Role of nerve growth factor in experimental autoimmune encephalomyelitis. Eur J Immunol. 2001;31:625–33.

    Article  PubMed  CAS  Google Scholar 

  20. Braun A, Appel E, Baruch R, Herz U, Botchkarev V, Paus R, et al. Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. Eur J Immunol. 1998;28:3240–51.

    Article  PubMed  CAS  Google Scholar 

  21. Abram M, Wegmann M, Fokuhl V, Sonar S, Luger EO, Kerzel S, et al. Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation. J Immunol. 2009;182:4705–12.

    Article  PubMed  CAS  Google Scholar 

  22. Noga O, Peiser M, Altenahr M, Schmeck B, Wanner R, Dinh QT, et al. Selective induction of nerve growth factor and brain-derived neurotrophic factor by LPS and allergen in dendritic cells. Clin Exp Allergy. 2008;38:473–9.

    Article  PubMed  CAS  Google Scholar 

  23. Scuri M, Samsell L, Piedimonte G. The role of neurotrophins in inflammation and allergy. Inflamm Allergy Drug Targets. 2010;9:173–80.

    Article  PubMed  CAS  Google Scholar 

  24. Bonini S, Lambiase A, Bonini S, Angelucci F, Magrini L, Manni L, et al. Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma. Proc Natl Acad Sci USA. 1996;93:10955–60.

    Article  PubMed  CAS  Google Scholar 

  25. De Vries A, Engels F, Henricks PA, Leusink-Muis T, Fischer A, Nijkamp FP. Antibodies directed against nerve growth factor inhibit the acute bronchoconstriction due to allergen challenge in guinea-pigs. Clin Exp Allergy. 2002;32:325–8.

    Article  PubMed  Google Scholar 

  26. Glaab T, Hoymann HG, Hecht M, Korolewitz R, Tschernig T, Hohlfeld JM, et al. Effect of anti-nerve growth factor on early and late airway responses in allergic rats. Allergy. 2003;58:900–4.

    Article  PubMed  CAS  Google Scholar 

  27. Lee CC, Huang HY, Chiang BL. Lentiviral-mediated GATA-3 RNAi decreases allergic airway inflammation and hyperresponsiveness. Mol Ther. 2008;16:60–5.

    Article  PubMed  CAS  Google Scholar 

  28. Myou S, Leff AR, Myo S, Boetticher E, Tong J, Meliton AY, et al. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. J Exp Med. 2003;198:1573–82.

    Article  PubMed  CAS  Google Scholar 

  29. Snijders D, Agostini S, Bertuola F, Panizzolo C, Baraldo S, Turato G, et al. Markers of eosinophilic and neutrophilic inflammation in bronchoalveolar lavage of asthmatic and atopic children. Allergy. 2009;65:978–85.

    Article  PubMed  Google Scholar 

  30. Finotto S. T-cell regulation in asthmatic diseases. Chem Immunol Allergy. 2008;94:83–92.

    Article  PubMed  CAS  Google Scholar 

  31. Callard RE, Turner MW. Cytokines and Ig switching: evolutionary divergence between mice and humans. Immunol Today. 1990;11:200–3.

    Article  PubMed  CAS  Google Scholar 

  32. Rosenwasser LJ. Mechanisms of IgE inflammation. Curr Allergy Asthma Rep. 2011;11:178–83.

    Article  PubMed  CAS  Google Scholar 

  33. D’Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH, Britos MF, et al. CD4+ CD25+ Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest. 2009;119:2898–913.

    Article  PubMed  Google Scholar 

  34. Freund-Michel V, Frossard N. The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol Ther. 2008;117:52–76.

    Article  PubMed  CAS  Google Scholar 

  35. Aloe L, Probert L, Kollias G, Micera A, Tirassa P. Effect of NGF antibodies on mast cell distribution, histamine and substance P levels in the knee joint of TNF-arthritic transgenic mice. Rheumatol Int. 1995;14:249–52.

    Article  PubMed  CAS  Google Scholar 

  36. Cazzola M, Polosa R. Anti-TNF-alpha and Th1 cytokine-directed therapies for the treatment of asthma. Curr Opin Allergy Clin Immunol. 2006;6:43–50.

    Article  PubMed  CAS  Google Scholar 

  37. Ahangarani RR, Janssens W, VanderElst L, Carlier V, VandenDriessche T, Chuah M, et al. In vivo induction of type 1-like regulatory T cells using genetically modified B cells confers long-term IL-10-dependent antigen-specific unresponsiveness. J Immunol. 2009;183:8232–43.

    Article  PubMed  Google Scholar 

  38. Yang M, Kumar RK, Foster PS. Interferon-gamma and pulmonary macrophages contribute to the mechanisms underlying prolonged airway hyperresponsiveness. Clin Exp Allergy. 2009;40:163–73.

    PubMed  Google Scholar 

  39. Ehrhard PB, Erb P, Graumann U, Otten U. Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl Acad Sci USA. 1993;90:10984–8.

    Article  PubMed  CAS  Google Scholar 

  40. Noga O, Peiser M, Altenahr M, Knieling H, Wanner R, Hanf G, et al. Differential activation of dendritic cells by nerve growth factor and brain-derived neurotrophic factor. Clin Exp Allergy. 2007;37:1701–8.

    Article  PubMed  CAS  Google Scholar 

  41. Sato K, Yamashita N, Baba M, Matsuyama T. Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood. 2003;101:3581–9.

    Article  PubMed  CAS  Google Scholar 

  42. Aloe L, Tuveri MA. Nerve growth factor and autoimmune rheumatic diseases. Clin Exp Rheumatol. 1997;15:433–8.

    PubMed  CAS  Google Scholar 

  43. Raychaudhuri SP, Sanyal M, Weltman H, Kundu-Raychaudhuri S. K252a, a high-affinity nerve growth factor receptor blocker, improves psoriasis: an in vivo study using the severe combined immunodeficient mouse-human skin model. J Invest Dermatol. 2004;122:812–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

All of the authors state no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingli Jin.

Additional information

Responsible Editor: Michael Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Jin, Y., Guo, W. et al. Blockage of nerve growth factor modulates T cell responses and inhibits allergic inflammation in a mouse model of asthma. Inflamm. Res. 61, 1369–1378 (2012). https://doi.org/10.1007/s00011-012-0538-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0538-3

Keywords

Navigation