Skip to main content

Advertisement

Log in

Overdose of the histamine H3 inverse agonist pitolisant increases thermal pain thresholds

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Pitolisant (BF2.649) is a selective inverse agonist for the histamine H3 receptor and was developed for the treatment of excessive daytime sleepiness in Parkinson disease, narcolepsy, and schizophrenia. Since H3-ligands can decrease inflammatory pain, we tested Pitolisant in inflammatory and neuropathic pain models.

Materials and treatments

Behavioral effects of pitolisant and the structural different H3 receptor inverse agonists ciproxifan and ST-889 were tested in zymosan-induced inflammation and the spared nerve injury model for neuropathic pain.

Methods

Responses to mechanical and thermal stimuli were determined. Calcium imaging was performed with primary neuronal cultures of dorsal root ganglions.

Results

Clinically relevant doses of pitolisant (10 mg/kg) had no relevant effect on mechanical or thermal pain thresholds in all animal models. Higher doses (50 mg/kg) dramatically increased thermal but not mechanical pain thresholds. Neither ciproxifan nor ST-889 altered thermal pain thresholds. In peripheral sensory neurons high concentrations of pitolisant (30–500 μM), but not ciproxifan, partially inhibited calcium increases induced by capsaicin, a selective activator of transient receptor potential vanilloid receptor 1 (TRPV1). High doses of pitolisant induced a strong hypothermia.

Conclusion

The data show a dramatic effect of high dosages of pitolisant on the thermosensory system, which appears to be H3 receptor-independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DRG:

Dorsal root ganglions

H3 :

Histamine receptor 3

i.p.:

Intraperitoneal

i.th:

Intrathecal

PWL:

Paw withdrawal latency

SNI:

Spared nerve injury

TRP:

Transient receptor potential receptors

TRPV1:

Transient receptor potential vanilloid receptor 1

References

  1. Lieberman P. Histamine, antihistamines, and the central nervous system. Allergy Asthma Proc. 2009;30:482–6.

    Article  PubMed  CAS  Google Scholar 

  2. Jutel M, Akdis M, Akdis CA. Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy. 2009;39:1786–800.

    Article  PubMed  CAS  Google Scholar 

  3. Martinez-Mir MI, Pollard H, Moreau J, Arrang JM, Ruat M, Traiffort E, et al. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res. 1990;526:322–7.

    Article  PubMed  CAS  Google Scholar 

  4. Pillot C, Heron A, Cochois V, Tardivel-Lacombe J, Ligneau X, Schwartz JC, et al. A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience. 2002;114:173–93.

    Article  PubMed  CAS  Google Scholar 

  5. Arrang JM, Garbarg M, Lancelot JC, Lecomte JM, Pollard H, Robba M, et al. Highly potent and selective ligands for histamine H3-receptors. Nature. 1987;327:117–23.

    Article  PubMed  CAS  Google Scholar 

  6. Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983;302:832–7.

    Article  PubMed  CAS  Google Scholar 

  7. Raddatz R, Tao M, Hudkins RL. Histamine H3 antagonists for treatment of cognitive deficits in CNS diseases. Curr Top Med Chem. 2010;10:153–69.

    Article  PubMed  CAS  Google Scholar 

  8. Tiligada E, Zampeli E, Sander K, Stark H. Histamine H3 and H4 receptors as novel drug targets. Expert Opin Investig Drugs. 2009;18:1519–31.

    Article  PubMed  CAS  Google Scholar 

  9. Sander K, Kottke T, Stark H. Histamine H3 receptor antagonists go to clinics. Biol Pharm Bull. 2008;31:2163–81.

    Article  PubMed  CAS  Google Scholar 

  10. Pierre S, Eschenhagen T, Geisslinger G, Scholich K. Capturing adenylyl cyclases as potential drug targets. Nat Rev Drug Discov. 2009;8:321–35.

    Article  PubMed  CAS  Google Scholar 

  11. Hough L, Rice FL. H3 receptor miniseries: H3 receptors and pain modulation: peripheral, spinal and brain interactions. J Pharmacol Exp Ther. 2011;336:30–7.

    Article  PubMed  CAS  Google Scholar 

  12. Cannon KE, Hough LB. Inhibition of chemical and low-intensity mechanical nociception by activation of histamine H3 receptors. J Pain. 2005;6:193–200.

    Article  PubMed  CAS  Google Scholar 

  13. Farzin D, Asghari L, Nowrouzi M. Rodent antinociception following acute treatment with different histamine receptor agonists and antagonists. Pharmacol Biochem Behav. 2002;72:751–60.

    Article  PubMed  CAS  Google Scholar 

  14. Medhurst AD, Briggs MA, Bruton G, Calver AR, Chessell I, Crook B, et al. Structurally novel histamine H3 receptor antagonists GSK207040 and GSK334429 improve scopolamine-induced memory impairment and capsaicin-induced secondary allodynia in rats. Biochem Pharmacol. 2007;73:1182–94.

    Article  PubMed  CAS  Google Scholar 

  15. Cannon KE, Leurs R, Hough LB. Activation of peripheral and spinal histamine H3 receptors inhibits formalin-induced inflammation and nociception, respectively. Pharmacol Biochem Behav. 2007;88:122–9.

    Article  PubMed  CAS  Google Scholar 

  16. Hsieh GC, Honore P, Pai M, Wensink EJ, Chandran P, Salyers AK, et al. Antinociceptive effects of histamine H3 receptor antagonist in the preclinical models of pain in rats and the involvement of central noradrenergic systems. Brain Res. 2010;1354:74–84.

    Article  PubMed  CAS  Google Scholar 

  17. Medhurst SJ, Collins SD, Billinton A, Bingham S, Dalziel RG, Brass A, et al. Novel histamine H3 receptor antagonists GSK189254 and GSK334429 are efficacious in surgically-induced and virally-induced rat models of neuropathic pain. Pain. 2008;138:61–9.

    Article  PubMed  CAS  Google Scholar 

  18. Huang L, Adachi N, Nagaro T, Liu K, Arai T. Histaminergic involvement in neuropathic pain produced by partial ligation of the sciatic nerve in rats. Reg Anesth Pain Med. 2007;32:124–9.

    PubMed  CAS  Google Scholar 

  19. Meier G, Apelt J, Reichert U, Grassmann S, Ligneau X, Elz S, et al. Influence of imidazole replacement in different structural classes of histamine H(3)-receptor antagonists. Eur J Pharm Sci. 2001;13:249–59.

    Article  PubMed  CAS  Google Scholar 

  20. Stark H. Convenient procedures for synthesis of ciproxifan, a histamine H3-receptor antagonist. Arch Pharm (Weinheim). 2000;333:315–6.

    Article  CAS  Google Scholar 

  21. Linke B, Pierre S, Coste O, Angioni C, Becker W, Maier TJ, et al. Toponomics analysis of drug-induced changes in arachidonic acid-dependent signaling pathways during spinal nociceptive processing. J Proteome Res. 2009;8:4851–9.

    Article  PubMed  CAS  Google Scholar 

  22. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87:149–58.

    Article  PubMed  CAS  Google Scholar 

  23. Sango K, McDonald MP, Crawley JN, Mack ML, Tifft CJ, Skop E, et al. Mice lacking both subunits of lysosomal beta-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet. 1996;14:348–52.

    Article  PubMed  CAS  Google Scholar 

  24. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88.

    Article  PubMed  CAS  Google Scholar 

  25. Ligneau X, Landais L, Perrin D, Piriou J, Uguen M, Denis E, et al. Brain histamine and schizophrenia: potential therapeutic applications of H3-receptor inverse agonists studied with BF2.649. Biochem Pharmacol. 2007;73:1215–24.

    Article  PubMed  CAS  Google Scholar 

  26. Kathmann M, Schlicker E, Marr I, Werthwein S, Stark H, Schunack W. Ciproxifan and chemically related compounds are highly potent and selective histamine H3-receptor antagonists. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:623–7.

    Article  PubMed  CAS  Google Scholar 

  27. Rouleau A, Heron A, Cochois V, Pillot C, Schwartz JC, Arrang JM. Cloning and expression of the mouse histamine H3 receptor: evidence for multiple isoforms. J Neurochem. 2004;90:1331–8.

    Article  PubMed  CAS  Google Scholar 

  28. Rossbach K, Nassenstein C, Gschwandtner M, Schnell D, Sander K, Seifert R, et al. Histamine H, H and H receptors are involved in pruritus. Neuroscience. 2011;190:89–102.

    Article  PubMed  CAS  Google Scholar 

  29. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–82.

    Article  PubMed  CAS  Google Scholar 

  30. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron. 2006;50:277–89.

    Article  PubMed  CAS  Google Scholar 

  31. Mills C, McMackin M, Jaffe R, Yu J, Zininberg E, Slee D, et al. Effects of the transient receptor potential vanilloid 1 antagonist A-425619 on body temperature and thermoregulation in the rat. Neuroscience. 2008;156:165–74.

    Article  PubMed  CAS  Google Scholar 

  32. Moran MM, McAlexander MA, Biro T, Szallasi A. Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov. 2011;10:601–20.

    Article  PubMed  CAS  Google Scholar 

  33. Hough LB, Rice FL. H3 receptors and pain modulation: peripheral, spinal, and brain interactions. J Pharmacol Exp Ther. 2011;336:30–7.

    Article  PubMed  CAS  Google Scholar 

  34. Fundin BT, Pfaller K, Rice FL. Different distributions of the sensory and autonomic innervation among the microvasculature of the rat mystacial pad. J Comp Neurol. 1997;389:545–68.

    Article  PubMed  CAS  Google Scholar 

  35. Bowsher D, Geoffrey Woods C, Nicholas AK, Carvalho OM, Haggett CE, Tedman B, et al. Absence of pain with hyperhidrosis: a new syndrome where vascular afferents may mediate cutaneous sensation. Pain 2009;147:287–98.

    Google Scholar 

  36. Boulant JA. Hypothalamic neurons. Mechanisms of sensitivity to temperature. Ann N Y Acad Sci. 1998;856:108–15.

    Article  PubMed  CAS  Google Scholar 

  37. Bardgett ME, Points M, Kleier J, Blankenship M, Griffith MS. The H3 antagonist, ciproxifan, alleviates the memory impairment but enhances the motor effects of MK-801 (dizocilpine) in rats. Neuropharmacology. 2010;59:492–502.

    Article  PubMed  CAS  Google Scholar 

  38. Faucard R, Armand V, Heron A, Cochois V, Schwartz JC, Arrang JM. N-methyl-d-aspartate receptor antagonists enhance histamine neuron activity in rodent brain. J Neurochem. 2006;98:1487–96.

    Article  PubMed  CAS  Google Scholar 

  39. Bardgett ME, Points M, Roflow J, Blankenship M, Griffith MS. Effects of the H(3) antagonist, thioperamide, on behavioral alterations induced by systemic MK-801 administration in rats. Psychopharmacology (Berl). 2009;205:589–97.

    Article  CAS  Google Scholar 

  40. Nuutinen S, Karlstedt K, Aitta-Aho T, Korpi ER, Panula P. Histamine and H3 receptor-dependent mechanisms regulate ethanol stimulation and conditioned place preference in mice. Psychopharmacology (Berl). 2010;208:75–86.

    Article  CAS  Google Scholar 

  41. Brabant C, Charlier Y, Quertemont E, Tirelli E. The H3 antagonist thioperamide reveals conditioned preference for a context associated with an inactive small dose of cocaine in C57BL/6J mice. Behav Brain Res. 2005;160:161–8.

    Article  PubMed  CAS  Google Scholar 

  42. Brosnan-Watters G, Wozniak DF, Nardi A, Olney JW. Acute behavioral effects of MK-801 in the mouse. Pharmacol Biochem Behav. 1996;53:701–11.

    Article  PubMed  CAS  Google Scholar 

  43. Wozniak DF, Olney JW, Kettinger L 3rd, Price M, Miller JP. Behavioral effects of MK-801 in the rat. Psychopharmacology (Berl). 1990;101:47–56.

    Article  CAS  Google Scholar 

  44. Immke DC, Gavva NR. The TRPV1 receptor and nociception. Semin Cell Dev Biol. 2006;17:582–91.

    Article  PubMed  CAS  Google Scholar 

  45. Gavva NR, Bannon AW, Surapaneni S, Hovland DN Jr, Lehto SG, Gore A, et al. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci. 2007;27:3366–74.

    Article  PubMed  CAS  Google Scholar 

  46. Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, et al. Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem. 2005;48:1857–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG (German Research Association) grants SCHO817-2 and SCHO817-2, the LOEWE Lipid Signaling Forschungszentrum Frankfurt (LiFF), the LOEWE NeFF and the European COST Action BM0860.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Holger Stark or Klaus Scholich.

Additional information

Responsible Editor: Andras Falus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D.D., Sisignano, M., Schuh, C.D. et al. Overdose of the histamine H3 inverse agonist pitolisant increases thermal pain thresholds. Inflamm. Res. 61, 1283–1291 (2012). https://doi.org/10.1007/s00011-012-0528-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0528-5

Keywords

Navigation