Skip to main content

Advertisement

Log in

Combined use of etanercept and MTX restores CD4+/CD8+ ratio and Tregs in spleen and thymus in collagen-induced arthritis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To further explore the mechanism of etanercept (ENT, rhTNFR:Fc) and methotrexate (MTX) in the combined treatment of rheumatoid arthritis (RA), we investigated whether thymic and splenic T-cell subsets and their related cytokines imbalance could be restored by ETN/MTX treatment.

Methods

The effect of ETN/MTX on collagen-induced arthritis (CIA) was evaluated by arthritis scores, joint and spleen histopathology, as well as indices of thymus and spleen. T lymphocytes proliferation was determined by [3H]-TdR incorporation. Levels of TNF-α, LT-α, IL-1β, RANKL, IL-10, IL-17, IFN-γ and IL-6 were detected by enzyme linked immunosorbent assay. The subsets of T lymphocytes including CD4+, CD8+, CD3+CD4+, CD4+CD25+, CD4+CD62L+ and CD4+CD25+Foxp3+ cells were quantified using flow cytometry.

Results

Combined administration of ETN/MTX significantly inhibited the proliferation of T lymphocytes, decreased serum IL-6, TNF-α, IL-1β, RANKL and macrophage supernatant IL-17, LT-α, increased serum IFN-γ and macrophage supernatant IL-10. Moreover, the combined administration could restore CD4+/CD8+ ratio and Treg cells of CIA thymus and spleen.

Conclusion

Taken together, our findings suggest that ENT/MTX may modify the abnormal T lymphocytes balance from central to peripheral lymphoid organs, which may partially, explained the mechanism of the combined administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376(9746):1094–108.

    Article  PubMed  Google Scholar 

  2. Karlsson J, Johannesson M, Lindvall T, Wernhoff P, Holmdahl R, Andersson A. Genetic interactions in Eae2 control collagen-induced arthritis and the CD4+/CD8+ T cell ratio. J Immunol. 2005;174(1):533–41.

    PubMed  CAS  Google Scholar 

  3. Oh S, Rankin AL, Caton AJ. CD4+CD25+ regulatory T cells in autoimmune arthritis. Immunol Rev. 2010;233(1):97–111.

    Article  PubMed  CAS  Google Scholar 

  4. Naito T, Tanaka H, Naoe Y, Taniuchi I. Transcriptional control of T-cell development. Int Immunol. 2011;23(11):661–8.

    Article  PubMed  CAS  Google Scholar 

  5. Erf GF, Bottje WG, Bersi TK. CD4, CD8 and TCR defined T-cell subsets in thymus and spleen of 2- and 7-week old commercial broiler chickens. Vet Immunol Immunopathol. 1998;62(4):339–48.

    Article  PubMed  CAS  Google Scholar 

  6. Oh S, Rankin AL, Caton AJ. CD4+CD25+ regulatory T cells in autoimmune arthritis. Immunol Rev. 2010;233(1):97–111.

    Article  PubMed  CAS  Google Scholar 

  7. Li Z, Zhang Y, Sun B. Current understanding of Th2 cell differentiation and function. Protein Cell. 2011;2(8):604–11.

    Article  PubMed  CAS  Google Scholar 

  8. Lee SW, Kim JH, Park MC, Park YB, Chae WJ, Morio T, Lee DH, et al. Alleviation of rheumatoid arthritis by cell-transducible methotrexate upon transcutaneous delivery. Biomaterials. 2012;33(5):1563–72.

    Article  PubMed  CAS  Google Scholar 

  9. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42.

    Article  PubMed  CAS  Google Scholar 

  10. Kim KW, Cho ML, Park MK, Yoon CH, Park SH, Lee SH, et al. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res Ther. 2005;7(1):R139–48.

    Article  PubMed  CAS  Google Scholar 

  11. Zwerina J, Redlich K, Schett G, Smolen JS. Pathogenesis of rheumatoid arthritis: targeting cytokines. Ann N Y Acad Sci. 2005;1051:716–29.

    Article  PubMed  CAS  Google Scholar 

  12. Brenner M, Laragione T, Yarlett NC, Gulko PS. Genetic regulation of T regulatory, CD4, and CD8 cell numbers by the arthritis severity loci Cia5a, Cia5d, and the MHC/Cia1 in the rat. Mol Med. 2007;13(5–6):277–87.

    PubMed  CAS  Google Scholar 

  13. Kadowaki KM, Matsuno H, Tsuji H, Tunru I. CD4+ T cells from collagen-induced arthritic mice are essential to transfer arthritis into severe combined immunodeficient mice. Clin Exp Immunol. 1994;97(2):212–8.

    Article  PubMed  CAS  Google Scholar 

  14. Cantagrel A, Roubinet F, Lassoued S, Kuhlein E, Fournie B, Laroche M, et al. The transsynovial lymphocytic ratio. Characterization of blood and synovial fluid lymphocytes from patients with arthritic diseases. J Rheumatol. 1988;15(6):899–904.

    PubMed  CAS  Google Scholar 

  15. Emery P, Gentry KC, Mackay IR, Muirden KD, Rowley M. Deficiency of the suppressor inducer subset of T lymphocytes in rheumatoid arthritis. Arthritis Rheum. 1987;30(8):849–56.

    Article  PubMed  CAS  Google Scholar 

  16. Kanda H, Yokota K, Kohno C, Sawada T, Sato K, Yamaguchi M, et al. Effects of low-dosage simvastatin on rheumatoid arthritis through reduction of Th1/Th2 and CD4/CD8 ratios. Mod Rheumatol. 2007;17(5):364–8.

    Article  PubMed  CAS  Google Scholar 

  17. Ravlić-Gulan J, Gulan G, Novak S, Duletić-Nacinović A, Matovinović D, Rukavina D. A comparison of lymphocyte subpopulations simultaneously on local and systemic levels in acute rheumatoid arthritis patients. Coll Antropol. 2005;29(2):661–9.

    PubMed  Google Scholar 

  18. Evans DM, Zhu G, Duffy DL, Frazer IH, Montgomery GW, Martin NG. A major quantitative trait locus for CD4-CD8 ratio is located on chromosome 11. Genes Immun. 2004;5(7):548–52.

    Article  PubMed  CAS  Google Scholar 

  19. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol. 2007;148(1):32–46.

    Article  PubMed  CAS  Google Scholar 

  20. Monte K, Wilson C, Shih FF. Increased number and function of FoxP3 regulatory T cells during experimental arthritis. Arthritis Rheum. 2008;58(12):3730–41.

    Article  PubMed  Google Scholar 

  21. Baseta JG, Stutman O. TNF regulates thymocyte production by apoptosis and proliferation of the triple negative (CD3CD4CD8) subset. J Immunol. 2000;165(10):5621–30.

    PubMed  CAS  Google Scholar 

  22. Everson MP, Eldridge JH, Koopman WJ. Synergism of interleukin 7 with the thymocyte growth factors interleukin 2, interleukin 6, and tumor necrosis factor alpha in the induction of thymocyte proliferation. Cell Immunol. 1990;127(2):470–82.

    Article  PubMed  CAS  Google Scholar 

  23. Krangel MS, Yssel H, Brocklehurst C, Spits H. A distinct wave of human T cell receptor gamma/delta lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production. J Exp Med. 1990;172(3):847–59.

    Article  PubMed  CAS  Google Scholar 

  24. Annunziato F, Cosmi L, Liotta F, Lazzeri E, Manetti R, Vanini V, et al. Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. J Exp Med. 2002;196(3):379–87.

    Article  PubMed  CAS  Google Scholar 

  25. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42.

    Article  PubMed  CAS  Google Scholar 

  26. Lee EY, Seo M, Juhnn YS, Kim JY, Hong YJ, Lee YJ, et al. Potential role and mechanism of IFN-gamma inducible protein-10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rheumatoid arthritis. Arthritis Res Ther. 2011;13(3):R104.

    Article  PubMed  Google Scholar 

  27. Schulze-Tanzil G, Al-Sadi O, Wiegand E, Ertel W, Busch C, Kohl B, et al. The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. Scand J Med Sci Sports. 2011;21(3):337–51.

    Article  PubMed  CAS  Google Scholar 

  28. Liu Y, Zhang L, Wu Y, Tong T, Zhao W, Li P, et al. Therapeutic effects of TACI-Ig on collagen-induced arthritis by regulating T and B lymphocytes function in DBA/1 mice. Eur J Pharmacol. 2011;654(3):304–14.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang LL, Wei W, Yan SX, Hu XY, Sun WY. Therapeutic effects of glucosides of Cheanomeles speciosa on collagen-induced arthritis in mice. Acta Pharmacol Sin. 2004;25(11):1495–501.

    PubMed  CAS  Google Scholar 

  30. Wang D, Chang Y, Wu Y, Zhang L, Yan S, Xie G, et al. Therapeutic effects of TACI-Ig on rat with adjuvant arthritis. Clin Exp Immunol. 2011;163(2):225–34.

    Article  PubMed  CAS  Google Scholar 

  31. Xu H, Liew LN, Kuo IC, Huang CH, Goh DL, Chua KY. The modulatory effects of lipopolysaccharide-stimulated B cells on differential T-cell polarization. Immunology. 2008;125(2):218–28.

    Article  PubMed  CAS  Google Scholar 

  32. Lee EY, Seo M, Juhnn YS, Kim JY, Hong YJ, Lee YJ, et al. Potential role and mechanism of IFN-gamma inducible protein-10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rheumatoid arthritis. Arthritis Res Ther. 2011;13(3):R104.

    Article  PubMed  Google Scholar 

  33. Twu YC, Gold MR, Teh HS. TNFR1 delivers pro-survival signals that are required for limiting TNFR2-dependent activation-induced cell death (AICD) in CD8+ T cells. Eur J Immunol. 2011;41(2):335–44.

    Article  PubMed  CAS  Google Scholar 

  34. Baig JA, Iqbal MP, Rehman R, Qureshi AA, Ahmed M. Anti-inflammatory role of methotrexate in adjuvant arthritis: effect on substance p and calcitonin gene-related Peptide in thymus and spleen. J Coll hysicians Surg Pak. 2007;17(8):490–4

    Google Scholar 

  35. Zhou J, Xiao C, Zhao L, Jia H, Zhao N, Lu C, et al. The effect of triptolide on CD4+ and CD8+ cells in Peyer`s patch of SD rats with collagen induced arthritis. Int Immunopharmacol. 2006;6(2):198–203.

    Article  PubMed  CAS  Google Scholar 

  36. Naito T, Tanaka H, Naoe Y, Taniuchi I. Transcriptional control of T-cell development. Int Immunol. 2000;23(11):661–8.

    Article  Google Scholar 

  37. Chen X, Oppenheim JJ. Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Lett. 2011;585(23):3611–8.

    Article  PubMed  CAS  Google Scholar 

  38. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF-alpha therapy. J Exp Med. 2004;200(3):277–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (30973543 and 81173075 to W. Wei), the Young Talents Foundation of the Education Department of Anhui Province (2010SQRL079 to Q. T. Wang), the Foundation from Janssen Research Council China (2011 to Q. T. Wang), the Anhui Provincial Natural Science Foundation (No. 1208085QH146 to QT Wang), and the Anhui Province Nature Science Foundation in University (KJ2011Z181, KJ2011Z180).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Jiang or W. Wei.

Additional information

Responsible Editor: John Di Battista.

B. Huang and Q. T. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Wang, Q.T., Song, S.S. et al. Combined use of etanercept and MTX restores CD4+/CD8+ ratio and Tregs in spleen and thymus in collagen-induced arthritis. Inflamm. Res. 61, 1229–1239 (2012). https://doi.org/10.1007/s00011-012-0520-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0520-0

Keywords

Navigation