Skip to main content
Log in

Regulation of inflammatory response in human chondrocytes by lentiviral mediated RNA interference against S100A10

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The aim of the present study was to evaluate the effects of S100A10 silencing on the inflammatory response in human chondrocytes (HCs).The inflammation induced by lipopolysaccharide (LPS) was investigated in HCs in which the S100A10 was blocked with a lentiviral shRNA vector.

Methods

A lentiviral shRNA vector targeting S100A10 was constructed and packaged to effectively block S100A10 expression in HCs. HCs were infected with the lentivirus. S100A10 expression levels in HCs were detected by western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was employed to evaluate the change of cytokine secretion levels. The effects of S100A10 silencing on the activation of mitogen-activated protein kinases (MAPKs) and NF-κB signaling pathway were also determined by western blot analysis. In addition, fluo-3-AM was used to demonstrate the change in calcium mobilization.

Results

Lentivirus effectively infected the HCs and inhibited the expression of S100A10. HCs with downregulated S100A10 showed significantly decreased production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-10. S100A10 silencing markedly suppressed the activation of MAPKs induced by LPS. Furthermore, the calcium concentration increase in HCs stimulated by LPS was also inhibited by S100A10 knockdown.

Conclusion

Our investigation demonstrated that S100A10 might be considered as a potential target for anti-inflammatory treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldring MB. The role of the chondrocyte in osteoarthritis. Arthr Rheum. 2000;43:1916–26.

    Article  CAS  Google Scholar 

  2. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997;99:1534–45.

    Article  PubMed  CAS  Google Scholar 

  3. Dahlberg L, Billinghurst RC, Manner P, Nelson F, Webb G, Ionescu M, et al. Selective enhancement of collagenase-mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1 (matrix metalloproteinase 1). Arthr Rheum. 2000;43:673–82.

    Article  CAS  Google Scholar 

  4. Borden P, Solymar D, Sucharczuk A, Lindman B, Cannon P, Heller RA. Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J Biol Chem. 1996;271:23577–81.

    Article  PubMed  CAS  Google Scholar 

  5. Glenney JR Jr, Tack BF. Amino-terminal sequence of p36 and associated p10: identification of the site of tyrosine phosphorylation and homology with S-100. Proc Natl Acad Sci. 1985;82:7884–8.

    Article  PubMed  CAS  Google Scholar 

  6. Johnsson N, Weber K. Alkylation of cysteine 82 of p11 abolishes the complex formation with the tyrosine-protein kinase substrate p36 (annexin 2, calpactin 1, lipocortin 2). J Biol Chem. 1990;265:14464–8.

    PubMed  CAS  Google Scholar 

  7. Gerke V, Weber K. Identity of p36 K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J. 1984;3:227–33.

    PubMed  CAS  Google Scholar 

  8. Waisman DM. Annexin II tetramer: structure and function. Mol Cell Biochem. 1995;149–150:301–22.

    Article  PubMed  Google Scholar 

  9. Gerke V, Moss SE. Annexins and membrane dynamics. Biochim Biophys Acta. 1997;1357:129–54.

    Article  PubMed  CAS  Google Scholar 

  10. Gerke V, Weber K. The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific protein kinases is related in sequence to the S-100 protein of glial cells. EMBO. 1985;4:2917–20.

    CAS  Google Scholar 

  11. Rescher U, Gerke V. S100A10/p11: family, friends and functions. Eur J Physiol. 2007;455:575–82.

    Article  Google Scholar 

  12. Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, Yacoubi ME, et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science. 2006;311:77–80.

    Article  PubMed  CAS  Google Scholar 

  13. Warner-Schmidt JL, Flajolet M, Maller A, Chen EY, Qi H, Svenningsson P, et al. Role of p11 in cellular and behavioral effects of 5-HT4 receptor stimulation. J Neurosci. 2009;29:1937–46.

    Article  PubMed  CAS  Google Scholar 

  14. Girard C, Tinel N, Terrenoire C, Romey G, Lazdunski M, Borsotto M. p11, an annexin II subunit, an auxiliary protein associated with the background K+channel, TASK-1. EMBO J. 2002;21:4439–48.

    Article  PubMed  CAS  Google Scholar 

  15. Renigunta V, Yuan H, Zuzarte M, Rinne S, Koch A, Wischmeyer E, et al. The retention factor p11 confers an endoplasmic reticulum-localization signal to the potassium channel TASK-1. Traffic. 2006;7:168–81.

    Article  PubMed  CAS  Google Scholar 

  16. Van de Graaf SFJ, Hoenderop JGJ, Gkika D, Lamers D, Prenen J, Rescher U, et al. Functional expression of the epithelial Ca2+channels (TRPV5 and TRPV6) requires association of the S100A10 annexin 2 complex. EMBO J. 2003;22:1478–87.

    Article  PubMed  Google Scholar 

  17. MacLeod TJ, Kwon M, Filipenko NR, Waisman DM. Phospholipid-associated annexin A2–S100A10 heterotetramer and its subunits: characterization of the interaction with tissue plasminogen activator, plasminogen, and plasmin. J Biol Chem. 2003;278:25577–84.

    Article  PubMed  CAS  Google Scholar 

  18. Fogg DK, Bridges DE, Cheung KK, Kassam G, Filipenko NR, Choi KS, et al. The p11 subunit of annexin II heterotetramer is regulated by basic carboxypeptidase. Biochemistry. 2002;41:4953–61.

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi S, Reddy SV, Chirgwin JM, et al. Cloning and identification of annexin II as an autocrine/paracrine factor that increases osteoclast formation and bone resorption. J Biol Chem. 1994;269:28696–701.

    PubMed  CAS  Google Scholar 

  20. Menaa C, Devlin RD, Reddy SV, Gazitt Y, Choi SJ, Roodman GD. Annexin II increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures. J Clin Invest. 1999;103:1605–13.

    Article  PubMed  CAS  Google Scholar 

  21. Li F, Chung H, Reddy SV, et al. Annexin II stimulates RANKL expression through MAPK. J Bone Miner Res. 2005;20:1161–7.

    Article  PubMed  CAS  Google Scholar 

  22. Swisher JF, Khatri U, Feldman GM. Annexin A2 is a soluble mediator of macrophage activation. J Leukocyte Biol. 2007;82:1174–84.

    Article  PubMed  CAS  Google Scholar 

  23. Attur MG, Patel IR, Patel RN, Abramson SB, Amin AR. Autocrine production of IL-1 beta by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc Assoc Am Physicians. 1998;110:65–72.

    PubMed  CAS  Google Scholar 

  24. Melchiorri C, Meliconi R, Frizziero L, Silvestri T, Pulsatelli L, Mazzetti I, et al. Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthr Rheum. 1998;41:2165–74.

    Article  CAS  Google Scholar 

  25. Moos V, Fickert S, Muller B, Weber U, Sieper J, Bloom L, et al. Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage. J Rheumatol. 1999;26:870–9.

    PubMed  CAS  Google Scholar 

  26. Arend WP, Dayer J-M. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthr Rheum. 1995;38:151–60.

    Article  CAS  Google Scholar 

  27. Westacott CI, Sharif M. Cytokines in osteoarthritis: mediators or markers of joint destruction? Semin Arthr Rheum. 1996;25:254–72.

    Article  CAS  Google Scholar 

  28. Goldring MB. The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res. 1999;40:1–11.

    Article  PubMed  CAS  Google Scholar 

  29. Iwamoto T, Okamoto H, Toyama Y, Momohara S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J. 2008;275:4448–55.

    Article  PubMed  CAS  Google Scholar 

  30. Lotz M, Terkeltaub R, Villiger PM. Cartilage and joint inflammation. Regulation of IL-8 expression by human articular chondrocytes. J Immunol. 1992;148:466–73.

    PubMed  CAS  Google Scholar 

  31. Lago R, Gomez R, Otero M, Lago F, Gallego R, Dieguez C, Gomez-Reino JJ, Gualillo O. A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthr Cartil. 2008;16:1101–9.

    Article  PubMed  CAS  Google Scholar 

  32. Trikha M, Corringham R, Klein B, Rossi JF. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res. 2003;9:4653–65.

    PubMed  CAS  Google Scholar 

  33. Hyka N, Dayer JM, Modoux C, Kohno T, Edwards CK 3rd, Roux-Lombard P, et al. Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood. 2001;97:2381–9.

    Article  PubMed  CAS  Google Scholar 

  34. Iannone F, De Bari C, Dell’Accio F, Covelli M, Cantatore FP, Patella V, et al. Interleukin-10 and interleukin-10 receptor in human osteoarthritic and healthy chondrocytes. Clin Exp Rheumatol. 2001;19:139–45.

    Article  PubMed  CAS  Google Scholar 

  35. Guerne PA, Carson DA, Lotz M. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J Immunol. 1990;144:499–505.

    PubMed  CAS  Google Scholar 

  36. Larsen C, Zachariae C, Mukaida N, Anderson A, Yamada M, Oppenheim J, et al. Proinflammatory cytokines interleukin 1 and tumor necrosis factor induce cytokines that are chemotactic for neutrophils, T cells and monocytes. Prog Clin Biol Res. 1990;349:419–31.

    PubMed  CAS  Google Scholar 

  37. Tetlow LC, Woolley DE. Comparative immunolocalization studies of collagenase 1 and collagenase 3 production in the rheumatoid lesion, and by human chondrocytes and synoviocytes in vitro. Br J Rheumatol. 1998;37:64–70.

    Article  PubMed  CAS  Google Scholar 

  38. Gee K, Kozlowski M, Kumar A. Tumor necrosis factor-alpha induces functionally active hyaluronan-adhesive CD44 by activating sialidase through p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated human monocytic cells. J Biol Chem. 2003;278:37275–87.

    Article  PubMed  CAS  Google Scholar 

  39. Baldassare JJ, Bi Y, Bellone CJ. The role of p38 mitogen-activated protein kinase in IL-1 beta transcription. J Immunol. 1999;162:5367–73.

    PubMed  CAS  Google Scholar 

  40. Swantek JL, Cobb MH, Geppert TD. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol. 1997;17:6274–82.

    PubMed  CAS  Google Scholar 

  41. Swisher JF, Burton N, Bacot SM, Vogel SN, Feldman GM. Annexin A2 tetramer activates human and murine macrophages through TLR4. Blood. 2010;115:549–58.

    Article  PubMed  CAS  Google Scholar 

  42. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, et al. Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature. 2001;414:308–13.

    Article  PubMed  Google Scholar 

  43. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72:1605–21.

    Article  PubMed  CAS  Google Scholar 

  44. Kaur J, Woodman RC, Kubes P. P38 MAPK: critical molecule in thrombin-induced NF-kappa B-dependent leukocyte recruitment. Am J Physiol Heart Circ Physiol. 2003;284:1095–103.

    Google Scholar 

  45. Vermeulen L, De Wilde G, Van Damme P. Vanden Berghe W, Haegeman G. Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J. 2003;22:1313–24.

    Article  PubMed  CAS  Google Scholar 

  46. Ye Y, Huang X, Zhang Y, Lai X, Wu X, Zeng X, et al. Calcium influx blocked by SK&F 96365 modulates the LPS plus IFN-γ-induced inflammatory response in murine peritoneal macrophages. Int Immunopharmacol. 2012;12:384–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirong Dong.

Additional information

Responsible Editor: Liwu Li.

Changzhi Song and Xiaoye Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, C., Zhou, X., Dong, Q. et al. Regulation of inflammatory response in human chondrocytes by lentiviral mediated RNA interference against S100A10. Inflamm. Res. 61, 1219–1227 (2012). https://doi.org/10.1007/s00011-012-0519-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0519-6

Keywords

Navigation