Skip to main content
Log in

Pro-inflammatory cytokine interleukin-1β promotes the development of intestinal stem cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

We investigated the effect of IL-1β on the development of intestinal epithelial stem cells.

Materials and methods

Normal intestinal epithelial cell line IEC-18 cells were cultured in the presence or absence of 200 pM of IL-1β in serum-free medium (SFM) for various time periods. The effects of IL-1β on intestinal stem cell self-renewal and IEC-18 cell proliferation were evaluated by a colony formation assay, MTT assay, and a focus formation assay. The expression of stemness genes including Bmi-1, Lgr-5, c-myc, Nanog, and β-catenin in IEC-18 cells were measured by quantitative PCR and western blot analysis.

Results

IEC-18 cells grew as a monolayer in SFM in the absence of IL-1β. Cellular spheres were formed when IEC-18 cells were grown in SFM in the presence of IL-1β. IL-1β induced the development of large colonies in the soft-agar as well as the formation of foci when IEC-18 cells were cultured in type-I collagen-coated plates. The expression of Bmi-1, Lgr-5, c-myc, Nanog, and β-catenin were significantly increased in IEC-18 cells treated with IL-1β.

Conclusion

Our studies provide direct evidence the IL-1β may play an important role in the self-renewal of intestinal epithelial stem cells and the development of cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Medema JP, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature. 2011;474(7351):318–26.

    Article  PubMed  CAS  Google Scholar 

  2. Umar S. Intestinal stem cells. Curr Gastroenterol Rep. 2010;12(5):340–8.

    Article  PubMed  Google Scholar 

  3. Barker N, Clevers H. Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology. 2007;133(6):1755–60.

    Article  PubMed  CAS  Google Scholar 

  4. Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457(7229):608–11.

    Article  PubMed  CAS  Google Scholar 

  5. Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science (New York, N.Y.). 2005;307(5717):1904–9.

    Article  CAS  Google Scholar 

  6. Jiang H, Patel PH, Kohlmaier A, et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell. 2009;137(7):1343–55.

    Article  PubMed  Google Scholar 

  7. Cronin SJ, Nehme NT, Limmer S, et al. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science (New York, N.Y). 2009;325(5938):340–3.

    Article  CAS  Google Scholar 

  8. Amcheslavsky A, Jiang J, Ip YT. Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell. 2009;4(1):49–61.

    Article  PubMed  CAS  Google Scholar 

  9. Buchon N, Broderick NA, Poidevin M, et al. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe. 2009;5(2):200–11.

    Article  PubMed  CAS  Google Scholar 

  10. Apidianakis Y, Pitsouli C, Perrimon N, et al. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Nat Acad Sci USA. 2009;106(49):20883–8.

    Article  PubMed  CAS  Google Scholar 

  11. Bernstein CN, Blanchard JF, Kliewer E, et al. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer. 2001;91(4):854–62.

    Article  PubMed  CAS  Google Scholar 

  12. El-Omar EM, Carrington M, Chow WH, et al. The role of interleukin-1 polymorphisms in the pathogenesis of gastric cancer. Nature. 2001;412(6842):99.

    Article  PubMed  CAS  Google Scholar 

  13. Cominelli F, Pizarro TT. Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Aliment Pharmacol Ther. 1996;10(Suppl 2):49–53. (discussion 54).

    PubMed  CAS  Google Scholar 

  14. Siegmund B. Interleukin-1beta converting enzyme (caspase-1) in intestinal inflammation. Biochem Pharmacol. 2002;64(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  15. Hamilton MJ, Snapper SB, Blumberg RS. Update on biologic pathways in inflammatory bowel disease and their therapeutic relevance. J Gastroenterol. 2012;47(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  16. Tu S, Bhagat G, Cui G, et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 2008;14(5):408–19.

    Article  PubMed  CAS  Google Scholar 

  17. Miki C, Konishi N, Ojima E, et al. C-reactive protein as a prognostic variable that reflects uncontrolled up-regulation of the IL-1-IL-6 network system in colorectal carcinoma. Dig Dis Sci. 2004;49(6):970–6.

    Article  PubMed  CAS  Google Scholar 

  18. Shi J, Aono S, Lu W, et al. A novel role for defensins in intestinal homeostasis: regulation of IL-1beta secretion. J Immunol. 2007;179(2):1245–53.

    PubMed  CAS  Google Scholar 

  19. Wang L, Liu Z, Balivada S et al. Interleukin-1beta and transforming growth factor-beat cooperate to induce neurosphere formation and increase tumorigenicity of adherent LN-229 glioma cells. Stem Cell Research and Therapy. 2012 (in press).

  20. Quaroni A, Isselbacher KJ. Cytotoxic effects and metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in duodenal and ileal epithelial cell cultures. J Natl Cancer Inst. 1981;67(6):1353–62.

    PubMed  CAS  Google Scholar 

  21. Quaroni A, Isselbacher KJ, Ruoslahti E. Fibronectin synthesis by epithelial crypt cells of rat small intestine. Proc Nat Acad Sci USA. 1978;75(11):5548–52.

    Article  PubMed  CAS  Google Scholar 

  22. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.

    Article  PubMed  CAS  Google Scholar 

  23. Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.

    Article  PubMed  CAS  Google Scholar 

  24. Dontu G, Wicha MS. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia. 2005;10(1):75–86.

    Article  PubMed  Google Scholar 

  25. Tavakoli T, Xu X, Derby E, et al. Self-renewal and differentiation capabilities are variable between human embryonic stem cell lines I3, I6 and BG01 V. BMC Cell Biol. 2009;10:44.

    Article  PubMed  Google Scholar 

  26. Tian H, Biehs B, Warming S, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478(7368):255–9.

    Article  PubMed  CAS  Google Scholar 

  27. Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40(7):915–20.

    Article  PubMed  CAS  Google Scholar 

  28. Bollrath J, Phesse TJ, von Burstin VA, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15(2):91–102.

    Article  PubMed  CAS  Google Scholar 

  29. Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15(2):103–13.

    Article  PubMed  CAS  Google Scholar 

  30. Moon RT, Bowerman B, Boutros M, et al. The promise and perils of Wnt signaling through beta-catenin. Science. 2002;296(5573):1644–6.

    Article  PubMed  CAS  Google Scholar 

  31. Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol. 2009;174(3):715–21.

    Article  PubMed  CAS  Google Scholar 

  32. Yu T, Chen X, Zhang W, et al. Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: implications for colon cancer. J Biol chem. 2012;287(6):3760–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kaler P, Augenlicht L, Klampfer L. Macrophage-derived IL-1beta stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene. 2009;28(44):3892–902.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Xiaoxia Wang for her technical help. This research was supported in part by Innovative Research Award (L. Wang) from Johnson Center for Basic Cancer Research at Kansas State University, NIH R21 AI085416 (J. Shi), KBA-CBRI 611310 (J. Shi), NIH NCRR P20-RR017686 (PI: Daniel Marcus; J. Shi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jishu Shi.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Liu, Z., Li, Y. et al. Pro-inflammatory cytokine interleukin-1β promotes the development of intestinal stem cells. Inflamm. Res. 61, 1085–1092 (2012). https://doi.org/10.1007/s00011-012-0501-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0501-3

Keywords

Navigation