Skip to main content

Indirubin-3-monoxime exhibits anti-inflammatory properties by down-regulating NF-κB and JNK signaling pathways in lipopolysaccharide-treated RAW264.7 cells

Abstract

Objective

Indirubin-3-monoxime (I3M), an indirubin analogue that shows favorable inhibitory activity targeting cyclin-dependent kinase and glycogen synthase kinase, exhibits various biological properties, including chemopreventive, antiangiogenic, and neuropreventive activities. In the present study, we investigated the ability of I3M to regulate inflammatory reactions in macrophages.

Methods

The effects of I3M on inflammation, lipopolysaccharide (LPS)-induced releases of inflammatory mediators, nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling was examined by ELISA and Western blotting analysis.

Results

I3M suppressed not only the generation of nitric oxide (NO) and prostaglandin E2 but also the expression of inducible NO synthase and cyclooxygenase-2 induced by LPS. Similarly, I3M inhibited the release of pro-inflammatory cytokines induced by LPS in RAW264.7 cells, including interleukin (IL)-1β and IL-6. The underlying mechanism of I3M on anti-inflammatory action was correlated with down-regulation of the NF-κB and MAPK activation.

Conclusions

Our data collectively indicate that I3M inhibited the production of several inflammatory mediators and might be used for the treatment of various inflammatory diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Pasparakis M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol. 2009;9:778–88.

    Article  PubMed  CAS  Google Scholar 

  2. Murakami A, Ohigashi H. Targeting NOX INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer. 2007;121:2357–63.

    Article  PubMed  CAS  Google Scholar 

  3. Krakauer T. Molecular therapeutic targets in inflammation: cyclooxygenase and NF-kappaB. Curr Drug Targets Inflamm Allergy. 2004;3:317–24.

    Article  PubMed  CAS  Google Scholar 

  4. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    Article  PubMed  CAS  Google Scholar 

  5. Müller-Ladner U, Gay RE, Gay S. Role of nuclear factor kappaB in synovial inflammation. Curr Rheumatol Rep. 2002;4:201–7.

    Article  PubMed  Google Scholar 

  6. Mantovani A, Garlanda C, Allavena P. Molecular pathways and targets in cancer-related inflammation. Ann Med. 2010;42:161–70.

    Article  PubMed  CAS  Google Scholar 

  7. Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011;13:11–22.

    Article  PubMed  CAS  Google Scholar 

  8. Xu Z, Huang CX, Li Y, Wang PZ, Ren GL, Chen CS, Shang FJ, Zhang Y, Liu QQ, Jia ZS, Nie QH, Sun YT, Bai XF. Toll-like receptor 4 siRNA attenuates LPS-induced secretion of inflammatory cytokines and chemokines by macrophages. J Infect. 2007;55:e1–9.

    Article  PubMed  Google Scholar 

  9. Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther. 2003;100:171–94.

    Article  PubMed  CAS  Google Scholar 

  10. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71:1397–421.

    Article  PubMed  CAS  Google Scholar 

  11. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134(Suppl):S3479–85.

    Google Scholar 

  12. Minich DM, Bland JS. Dietary management of the metabolic syndrome beyond macronutrients. Nutr Rev. 2008;66:429–44.

    Article  PubMed  Google Scholar 

  13. Xiao Z, Hao Y, Liu B, Qian L. Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China. Leuk Lymphoma. 2002;43:1763–8.

    Article  PubMed  CAS  Google Scholar 

  14. Perabo FG, Frössler C, Landwehrs G, Schmidt DH, von Rücker A, Wirger A, Müller SC. Indirubin-3′-monoxime, a CDK inhibitor induces growth inhibition and apoptosis-independent up-regulation of survivin in transitional cell cancer. Anticancer Res. 2006;26:2129–35.

    PubMed  CAS  Google Scholar 

  15. Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S, Hippe F, Vatter S, Merz KH, Eisenbrand G, Jove R. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci USA. 2005;102:5998–6003.

    Article  PubMed  CAS  Google Scholar 

  16. Sethi G, Ahn KS, Sandur SK, Lin X, Chaturvedi MM, Aggarwal BB. Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-κB signaling pathway. J Biol Chem. 2006;281:23425–35.

    Article  PubMed  CAS  Google Scholar 

  17. Jachak SM, Saklani A. Challenges and opportunities in drug discovery from plant. Curr Sci. 2007;92:1251–7.

    CAS  Google Scholar 

  18. Kim SA, Kim YC, Kim SW, Lee SH, Min JJ, Ahn SG, Yoon JH. Antitumor activity of novel indirubin derivatives in rat tumor model. Clin Cancer Res. 2007;13:253–9.

    Article  PubMed  CAS  Google Scholar 

  19. Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S. Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol. 2004;130:627–35.

    Article  PubMed  CAS  Google Scholar 

  20. Ribas J, Yuste VJ, Garrofé-Ochoa X, Meijer L, Esquerda JE, Boix J. 7-Bromoindirubin-3′-oxime uncovers a serine protease-mediated paradigm of necrotic cell death. Biochem Pharmacol. 2008;76:39–52.

    Article  PubMed  CAS  Google Scholar 

  21. Kim JK, Shin EK, Kang YH, Park JH. Indirubin-3′-monoxime, a derivative of a chinese antileukemia medicine, inhibits angiogenesis. J Cell Biochem. 2011;112:1384–91.

    Article  PubMed  CAS  Google Scholar 

  22. Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol. 2009;86:237–50.

    Article  PubMed  CAS  Google Scholar 

  23. Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta. 2007;1773:1161–76.

    Article  PubMed  CAS  Google Scholar 

  24. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005;1754:253–62.

    PubMed  CAS  Google Scholar 

  25. Rahman I, MacNee W. Role of transcription factors in inflammatory lung diseases. Thorax. 1988;53:601–12.

    Article  Google Scholar 

  26. Uto T, Fujii M, Hou DX. 6-(Methylsulfinyl)hexyl isothiocyanate suppresses inducible nitric oxide synthase expression through the inhibition of Janus kinase 2-mediated JNK pathway in lipopolysaccharide-activated murine macrophages. Biochem Pharmacol. 2005;70:1211–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by research grants from the Catholic University of Daegu in 2011.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Kyung Kim.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, JK., Park, GM. Indirubin-3-monoxime exhibits anti-inflammatory properties by down-regulating NF-κB and JNK signaling pathways in lipopolysaccharide-treated RAW264.7 cells. Inflamm. Res. 61, 319–325 (2012). https://doi.org/10.1007/s00011-011-0413-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0413-7

Keywords

  • Inflammation
  • Indirubin-3-monoxime
  • NF-κB
  • Macrophage
  • Inflammatory mediators