Skip to main content
Log in

Severe neutrophil-mediated lung inflammation in myeloperoxidase-deficient mice exposed to zymosan

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

This study examines the role of myeloperoxidase (MPO), a major constituent of neutrophils that generates hypochlorous acid, in neutrophil recruitment into the zymosan-exposed lung of mice.

Methods

Mice were inoculated intranasally with zymosan. The accumulation of neutrophils and other inflammatory cells within the lung was analyzed by flow cytometry. Macrophage inflammatory protein 2 (MIP-2) expression in the lung was quantified, and the contribution of this chemokine to neutrophil accumulation was examined by intranasal administration of MIP-2 antibody. The cellular sources of MIP-2 were identified, and the production of this chemokine from macrophages and neutrophils was quantified in vitro.

Results

Zymosan exposure led to greater neutrophil infiltration into the lungs of MPO−/− mice relative to wild-type mice. This was associated with higher MIP-2 levels in the mutant mice. Neutralization of MIP-2 in vivo significantly reduced neutrophil infiltration. Neutrophils from MPO−/− mice produced more MIP-2, and the production was reduced when MPO was added exogenously.

Conclusions

MPO deficiency results in severe lung inflammation in mice exposed to zymosan. Relatively high MIP-2 levels likely contribute to the strong inflammatory response in these animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F, Maeda N. Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun. 1999;67:1828–36.

    PubMed  CAS  Google Scholar 

  2. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Ishida-Okawara A, et al. Contribution of the myeloperoxidase-dependent oxidative system to host defence against Cryptococcus neoformans. J Med Microbiol. 2006;55:1291–9.

    Article  PubMed  CAS  Google Scholar 

  3. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med Mycol. 2002;40:557–63.

    PubMed  CAS  Google Scholar 

  4. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J Infect Dis. 2002;185:1833–7.

    Article  PubMed  CAS  Google Scholar 

  5. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. J Infect Dis. 2000;182:1276–9.

    Article  PubMed  CAS  Google Scholar 

  6. Jackson SH, Gallin JI, Holland SM. The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med. 1995;182:751–8.

    Article  PubMed  CAS  Google Scholar 

  7. Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J, et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet. 1995;9:202–9.

    Article  PubMed  CAS  Google Scholar 

  8. Morgenstern DE, Gifford MA, Li LL, Doerschuk CM, Dinauer MC. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med. 1997;185:207–18.

    Article  PubMed  CAS  Google Scholar 

  9. van de Loo FA, Bennink MB, Arntz OJ, Smeets RL, Lubberts E, Joosten LA, et al. Deficiency of NADPH oxidase components p47phox and gp91phox caused granulomatous synovitis and increased connective tissue destruction in experimental arthritis models. Am J Pathol. 2003;163:1525–37.

    Article  PubMed  Google Scholar 

  10. Komatsu J, Koyama H, Maeda N, Aratani Y. Earlier onset of neutrophil-mediated inflammation in the ultraviolet-exposed skin of mice deficient in myeloperoxidase and NADPH oxidase. Inflamm Res. 2006;55:200–6.

    Article  PubMed  CAS  Google Scholar 

  11. Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med. 2003;197:1119–24.

    Article  PubMed  CAS  Google Scholar 

  12. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197:1107–17.

    Article  PubMed  CAS  Google Scholar 

  13. Kelly MM, McNagny K, Williams DL, van Rooijen N, Maxwell L, Gwozd C, et al. The lung responds to zymosan in a unique manner independent of toll-like receptors, complement, and dectin-1. Am J Respir Cell Mol Biol. 2008;38:227–38.

    Article  PubMed  CAS  Google Scholar 

  14. Young SH, Ye J, Frazer DG, Shi X, Castranova V. Molecular mechanism of tumor necrosis factor-alpha production in 1– >3-beta-glucan (zymosan)-activated macrophages. J Biol Chem. 2001;276:20781–7.

    Article  PubMed  CAS  Google Scholar 

  15. Noguchi N, Nakano K, Aratani Y, Koyama H, Kodama T, Niki E. Role of myeloperoxidase in the neutrophil-induced oxidation of low density lipoprotein as studied by myeloperoxidase-knockout mouse. J Biochem. 2000;127:971–6.

    PubMed  CAS  Google Scholar 

  16. Rollins BJ. Chemokines. Blood. 1997;90:909–28.

    PubMed  CAS  Google Scholar 

  17. Wolpe SD, Sherry B, Juers D, Davatelis G, Yurt RW, Cerami A. Identification and characterization of macrophage inflammatory protein 2. Proc Natl Acad Sci USA. 1989;86:612–6.

    Article  PubMed  CAS  Google Scholar 

  18. Zhao MQ, Stoler MH, Liu AN, Wei B, Soguero C, Hahn YS, et al. Alveolar epithelial cell chemokine expression triggered by antigen-specific cytolytic CD8(+) T cell recognition. J Clin Invest. 2000;106:R49–58.

    Article  PubMed  CAS  Google Scholar 

  19. Biedermann T, Kneilling M, Mailhammer R, Maier K, Sander CA, Kollias G, et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J Exp Med. 2000;192:1441–52.

    Article  PubMed  CAS  Google Scholar 

  20. Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Laichalk LL, McGillicuddy DC, et al. Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J Infect Dis. 1996;173:159–65.

    Article  PubMed  CAS  Google Scholar 

  21. Hang L, Haraoka M, Agace WW, Leffler H, Burdick M, Strieter R, et al. Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract. J Immunol. 1999;162:3037–44.

    PubMed  CAS  Google Scholar 

  22. Matzer SP, Baumann T, Lukacs NW, Rollinghoff M, Beuscher HU. Constitutive expression of macrophage-inflammatory protein 2 (MIP-2) mRNA in bone marrow gives rise to peripheral neutrophils with preformed MIP-2 protein. J Immunol. 2001;167:4635–43.

    PubMed  CAS  Google Scholar 

  23. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA. 2000;97:13766–71.

    Article  PubMed  CAS  Google Scholar 

  24. Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol. 2003;171:417–25.

    PubMed  CAS  Google Scholar 

  25. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 1999;401:811–5.

    Article  PubMed  CAS  Google Scholar 

  26. Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature. 2006;442:651–6.

    Article  PubMed  CAS  Google Scholar 

  27. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31–8.

    Article  PubMed  CAS  Google Scholar 

  28. Saito T, Takahashi H, Doken H, Koyama H, Aratani Y. Phorbol myristate acetate induces neutrophil death through activation of p38 mitogen-activated protein kinase that requires endogenous reactive oxygen species other than HOCl. Biosci Biotechnol Biochem. 2005;69:2207–12.

    Article  PubMed  CAS  Google Scholar 

  29. Tsurubuchi T, Aratani Y, Maeda N, Koyama H. Retardation of early-onset PMA-induced apoptosis in mouse neutrophils deficient in myeloperoxidase. J Leukoc Biol. 2001;70:52–8.

    PubMed  CAS  Google Scholar 

  30. Matthijsen RA, Huugen D, Hoebers NT, de Vries B, Peutz-Kootstra CJ, Aratani Y, et al. Myeloperoxidase is critically involved in the induction of organ damage after renal ischemia reperfusion. Am J Pathol. 2007;171:1743–52.

    Article  PubMed  CAS  Google Scholar 

  31. Haegens A, van der Vliet A, Butnor KJ, Heintz N, Taatjes D, Hemenway D, et al. Asbestos-induced lung inflammation and epithelial cell proliferation are altered in myeloperoxidase-null mice. Cancer Res. 2005;65:9670–7.

    Article  PubMed  CAS  Google Scholar 

  32. Haegens A, Heeringa P, van Suylen RJ, Steele C, Aratani Y, O’Donoghue RJ, et al. Myeloperoxidase deficiency attenuates lipopolysaccharide-induced acute lung inflammation and subsequent cytokine and chemokine production. J Immunol. 2009;182:7990–6.

    Article  PubMed  CAS  Google Scholar 

  33. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Akiko Okawara and Haruki Seta for technical support. We also thank Youichi Masuda and Yukari Nishitani for animal care. This work was supported in part by a Grant from the Japanese Ministry of Health, Labor, and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Aratani.

Additional information

Responsible Editor: Michael Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, K., Umeki, Y., Matsumoto, N. et al. Severe neutrophil-mediated lung inflammation in myeloperoxidase-deficient mice exposed to zymosan. Inflamm. Res. 61, 197–205 (2012). https://doi.org/10.1007/s00011-011-0401-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0401-y

Keywords

Navigation