Skip to main content

Advertisement

Log in

Honokiol protects osteoblastic MC3T3-E1 cells against antimycin A-induced cytotoxicity

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Honokiol is a phenolic compound isolated from the bark of Magnolia officinalis, a plant widely used in traditional medicine. Antimycin A, which inhibits complex III of the electron transport system, has been used as a reactive oxygen species generator in biological systems. In the present study, we investigated the protective effects of honokiol on antimycin A-induced dysfunction in osteoblastic MC3T3-E1 cells.

Materials and methods

Osteoblastic MC3T3-E1 cells were pre-incubated with honokiol before treatment with antimycin A, and markers of mitochondrial function and oxidative damage were examined. In addition, the effects of honokiol on the activation of PI3K (phosphoinositide 3-kinase) and CREB (cAMP-responsive element-binding protein) were examined in MC3T3-E1 cells.

Results

Honokiol significantly (P < 0.05) increased cell viability and calcium deposition and decreased the production of ROS in the presence of antimycin A. Moreover, pretreatment with honokiol prior to antimycin A exposure significantly reduced antimycin A-induced mitochondrial membrane potential (MMP) dissipation, complex IV inactivation, nitrotyrosine formation, and thioredoxin reductase inactivation. Honokiol also induced the activation of PI3K and CREB inhibited by antimycin A, which demonstrates that honokiol utilizes the PI3K and CREB pathway to augment metabolic activity inhibited by antimycin A.

Conclusion

Honokiol may reduce or prevent osteoblast degeneration in osteoporosis or other degenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cooper C, Melton LJI. Magnitude and impact of osteoporosis and fractures. In: Kelsey J, editor. Osteoporosis. San Diego: Academic Press; 1996, p. 419–34.

  2. Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Srivastava R, Roy DS, Rosen BR, Beal MF. Age dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropioni acid. J Neurochem. 1993;60:356–9.

    Article  PubMed  CAS  Google Scholar 

  3. Smith TS, Bennett JP Jr. Mitochondrial toxins in neurodegenerative diseases: In vivo brain hydroxyl radical production during systemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ions. Brain Res. 1997;765:183–6.

    Article  PubMed  CAS  Google Scholar 

  4. Fiskum G, Rosenthal RE, Vereczki V, Martin E, Hoffman GE, Chinopoulos C, Kowaltowski A. Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J Bioenerg Biomembr. 2004;36:347–52.

    Article  PubMed  CAS  Google Scholar 

  5. Dawson TL, Gores GJ, Nieminen AL, Herman B, Lemasters JJ. Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am J Physiol. 1993;264:C961–7.

    PubMed  CAS  Google Scholar 

  6. Garcia-Ruiz C, Colell A, Morales A, Kaplowitz N, Fernandez-Checa JC. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes. Mol Pharmacol. 1995;48:825–34.

    PubMed  CAS  Google Scholar 

  7. Squires RF, Ai J, Witt MR, Kahnberg P, Saederup E, Sterner O, Nielsen M. Honokiol and magnolol increase the number of [3H] muscimol binding sites three-fold in rat forebrain membranes in vitro using a filtration assay, by allosterically increasing the affinities of low-affinity sites. Neurochem Res. 1999;24(12):1593–602.

    Article  PubMed  CAS  Google Scholar 

  8. Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK. The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Eur J Pharmacol. 2003;475(1–3):19–27.

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe K, Watanabe H, Goto Y, Yamaguchi M, Yamamoto N, Hagino K. Pharmacological properties of magnolol and honokiol extracted from Magnolia officinalis: central depressant effects. Planta Med. 1983;49:103–8.

    Article  CAS  Google Scholar 

  10. Chiang J, Shen YC, Wang YH, Hou YC, Chen CC, Liao JF, Yu MC, Juan CW, Liou KT. Honokiol protects rats against eccentric exercise-induced skeletal muscle damage by inhibiting NF-kappaB induced oxidative stress and inflammation. Eur J Pharmacol. 2009;610(1–3):119–27.

    Article  PubMed  CAS  Google Scholar 

  11. Dikalov S, Losik T, Arbiser JL. Honokiol is a potent scavenger of superoxide and peroxyl radicals. Biochem Pharmacol. 2008;76(5):589–96.

    Article  PubMed  CAS  Google Scholar 

  12. Park J, Lee J, Jung E, Park Y, Kim K, Park B, Jung K, Park E, Kim J, Park D. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur J Pharmacol. 2004;496(1–3):189–95.

    Article  PubMed  CAS  Google Scholar 

  13. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 1992;7:683–90.

    Article  PubMed  CAS  Google Scholar 

  14. Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980;191:421–7.

    PubMed  CAS  Google Scholar 

  15. Chance B, Seis H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.

    PubMed  CAS  Google Scholar 

  16. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  PubMed  CAS  Google Scholar 

  17. Stambough JL, Brigghton CT, Iannotti JP, Storey BT. Characterization of growth plate mitochondria. J Orthop Res. 1984;45:235–46.

    Article  Google Scholar 

  18. Wuthier RE, Chin JE, Hale JE, Register TC, Hale LV, Ishikawa Y. Isolation and characterization of calcium-accumulating matrix vesicles from chondrocytes of chicken epiphyseal growth plate cartilage in primary culture. J Biol Chem. 1985;260:15972–9.

    PubMed  CAS  Google Scholar 

  19. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6:513–9.

    Article  PubMed  CAS  Google Scholar 

  20. Dröse S, Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem. 2008;283:21649–54.

    Article  PubMed  Google Scholar 

  21. Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004;279:49064–73.

    Article  PubMed  CAS  Google Scholar 

  22. van der Vliet A, Eiserich JP, Kaur H, Cross CE, Halliwell B. Nitrotyrosine as a biomarker for reactive nitrogen species. Methods Enzymol. 1996;269:175–84.

    Article  PubMed  Google Scholar 

  23. van der Vliet A, Hristova M, Cross CE, Eiserich JP, Goldkorn T. Peroxynitrite induces covalent dimerization of epidermal growth factor receptors in A431 epidermoid carcinoma cells. J Biol Chem. 1998;273:31860–6.

    Article  PubMed  Google Scholar 

  24. MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci USA. 1996;93:11853–8.

    Article  PubMed  CAS  Google Scholar 

  25. Arner ES. Focus on mammalian thioredoxin reductases–important selenoproteins with versatile function. Biochim Biophys Acta. 2009;1790(6):495–526.

    PubMed  CAS  Google Scholar 

  26. Zhong L, Holmgren A. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem. 2000;275:18121–8.

    Article  PubMed  CAS  Google Scholar 

  27. Gromer S, Urig S, Becker K. The Thioredoxin system—from science to clinic. Med Res Rev. 2004;24:40–89.

    Article  PubMed  CAS  Google Scholar 

  28. Myers CR, Myers JM. The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells. Toxicology. 2009;257:95–104.

    Article  PubMed  CAS  Google Scholar 

  29. Carpio L, Gladu J, Goltzman D, Rabbani SA. Induction of osteoblast differentiation indexes by PTHrP in MG-63 cells involves multiple signaling pathways. Am J Physiol Endocrinol Metab. 2001;281:E489–99.

    PubMed  CAS  Google Scholar 

  30. Matsuo N, Tanaka S, Gordon MK, Koch M, Yoshioka H, Ramirez F. CREB-AP1 protein complexes regulate transcription of the collagen XXIV gene (Col24a1) in osteoblasts. J Biol Chem. 2006;281(9):5445–52.

    Article  PubMed  CAS  Google Scholar 

  31. Pawson T, Nash P. Protein-protein interaction define specificity in signal transduction. Gene Dev. 2000;14:1027–47.

    PubMed  CAS  Google Scholar 

  32. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    Article  PubMed  CAS  Google Scholar 

  33. De Rasmo D, Signorile A, Roca E, Papa S. cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J. 2009;276(16):4325–33.

    Article  PubMed  Google Scholar 

  34. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2006;18:357–68.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (20110005020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Mi Choi.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, E.M. Honokiol protects osteoblastic MC3T3-E1 cells against antimycin A-induced cytotoxicity. Inflamm. Res. 60, 1005–1012 (2011). https://doi.org/10.1007/s00011-011-0360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0360-3

Keywords

Navigation