Skip to main content
Log in

The modulatory effect of lipids and glucose on the neonatal immune response induced by Staphylococcus epidermidis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Parenteral nutrition is an important risk factor for late onset sepsis in neonates. This may be caused by the long-term need of central venous access but also through a potentially modulating effect of lipids and glucose on the immune function.

Objective

It was the aim of this study to characterize the effect of lipids and glucose on the neonatal immune response in an in vitro Staphylococcus epidermidis sepsis model using whole cord blood of healthy term infants and preterm infants.

Results

At the single cell level, IL-6, IL-8 and TNF-α expression of CD14+ cells was significantly increased upon addition of 1% lipids, while the addition of clinically meaningful lipid concentrations had no remarkable effect. When glucose was added to whole cord blood cultures, a dose-dependent effect was demonstrated for IL-8 expression but not for other cytokines.

Conclusions

These in vitro data suggest that the pro-inflammatory cytokine response to S. epidermidis may be modulated by lipids and glucose. Further studies are needed to investigate whether these findings are applicable to clinical settings and to evaluate the role of cytokine monitoring in infants receiving long-term parenteral nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IL:

Interleukin

TNF:

Tumor necrosis factor

S. epidermidis :

Staphylococcus epidermidis

References

  1. Okada Y, Klein NJ, von Saene HK, Webb G, Holzel H, Pierro A. Bactericidal activity against coagulase-negative staphylococci is impaired in infants receiving long-term parenteral nutrition. Ann Surg. 2000;231:276–81.

    Article  CAS  PubMed  Google Scholar 

  2. Dinerstein A, Nieto RM, Solana CL, Perez GP, Otheguy GP, Largia AM. Early and aggressive nutritional strategy (parenteral and enteral) decreases postnatal growth failure in very low birth weight infants. J Perinatol. 2006;26:436–42.

    Article  CAS  PubMed  Google Scholar 

  3. Bohles H. Indications for lipid infusion in pediatric patients. Klin Padiatr. 1989;201:146–53.

    Article  CAS  PubMed  Google Scholar 

  4. Lai NM, Rajadurai SV, Tan KH. Increased energy intake for preterm infants with (or developing) bronchopulmonary dysplasia/chronic lung disease. Cochrane Database Syst Rev 2006; 3: CD005093.

  5. Wesley JR, Coran AG. Intravenous nutrition for the pediatric patient. Semin Pediatr Surg. 1992;1:212–30.

    CAS  PubMed  Google Scholar 

  6. Stoll BJ, Hansen N. Infections in VLBW infants: studies from the NICHD Neonatal Research Network. Semin Perinatol. 2003;27:293–301.

    Article  PubMed  Google Scholar 

  7. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110:285–91.

    Article  PubMed  Google Scholar 

  8. Marchini G, Lindow S, Brismar H, Ståbi B, Berggren V, Ulfgren AK, et al. The newborn infant is protected by an innate antimicrobial barrier: peptide antibiotics are present in the skin and vernix caseosa. Br J Dermatol. 2002;147:1127–34.

    Article  CAS  PubMed  Google Scholar 

  9. Costa SF, Miceli MH, Anaissie EH. Mucosa or skin as source of coagulase-negative staphylococcal bacteraemia. Lancet Infect Dis. 2004;4:278–86.

    Article  PubMed  Google Scholar 

  10. Jarlov JO. Phenotypic characteristics of coagulase-negative staphylococci: typing and antibiotic susceptibility. APMIS Suppl. 1999;91:1–42.

    CAS  PubMed  Google Scholar 

  11. Avila-Figueroa C, Goldmann DA, Richardson DK, Gray JE, Ferrari A, Freeman J. Intravenous lipid emulsions are the major determinant of coagulase-negative staphylococcal bacteremia in very low birth weight newborns. Pediatr Infect Dis J. 1998;17:10–7.

    Article  CAS  PubMed  Google Scholar 

  12. Sweeney B, Puri B, Reen DJ. Polyunsaturated fatty acids influence neonatal monocyte survival. Pediatr Surg Int. 2001;17:254–8.

    Article  CAS  PubMed  Google Scholar 

  13. Sweeney B, Puri B, Reen DJ. Modulation of immune cell function by polyunsaturated fatty acids. Pediatr Surg Int. 2005;21:335–40.

    Article  PubMed  Google Scholar 

  14. Yu WK, Li WQ, Li N, Li JS. Influence of acute hyperglycemia in human sepsis on inflammatory cytokine and counterregulatory hormone concentrations. World J Gastroenterol. 2003;9:1824–7.

    CAS  PubMed  Google Scholar 

  15. Monson JR, Ramsden CW, MacFie J, Brennan TG, Guillou PJ. Immunorestorative effect of lipid emulsions during total parenteral nutrition. Br J Surg. 1986;73:843–6.

    Article  CAS  PubMed  Google Scholar 

  16. Sedman PC, Somers SS, Ramsden CW, Brennan TG, Guillou PJ. Effects of different lipid emulsions on lymphocyte function during total parenteral nutrition. Br J Surg. 1991;78:1396–9.

    Article  CAS  PubMed  Google Scholar 

  17. Van den Berghe G, Wouters PJ, Bouillon R, Weekers F, Verwaest C, Schetz M, et al. Outcome benefit of intensive insulin therapy in the critically ill: insulin dose versus glycemic control. Crit Care Med. 2003;31:359–66.

    Article  PubMed  Google Scholar 

  18. Calder PC. Effects of fatty acids and dietary lipids on cells of the immune system. Proc Nutr Soc. 1996;55:127–50.

    CAS  PubMed  Google Scholar 

  19. Calder PC. N-3 polyunsaturated fatty acids and immune cell function. Adv Enzyme Regul. 1997;37:197–237.

    Article  CAS  PubMed  Google Scholar 

  20. Hartel C, et al. Characterisation of the host inflammatory response to Staphylococcus epidermidis in neonatal whole blood. Arch Dis Child Fetal Neonatal Ed. 2008;93:F140–5.

    Article  CAS  PubMed  Google Scholar 

  21. Janeway CA. Immunobiology. 6th ed. New York: Taylor & Francis Group; 2005:76.

  22. Bjorkqvist M, et al. Phenotypic and genotypic characterisation of blood isolates of coagulase-negative staphylococci in the newborn. APMIS. 2002;110(4):332–9.

    Article  PubMed  Google Scholar 

  23. Härtel C, Osthues I, Rupp J, Haase B, Röder K, Göpel W, et al. Does the enteral feeding advancement affect short-term outcomes in very low birth weight infants? J Pediatr Gastroenterol Nutr. 2009;48:464–70.

    Article  PubMed  Google Scholar 

  24. Sweeney B, Puri B, Reen DJ. Induction and modulation of apoptosis in neonatal monocytes by polyunsaturated fatty acids. J Pediatr Surg. 2007;42:620–8.

    Article  PubMed  Google Scholar 

  25. Fischer GW, Hunter KW, Wilson SR, Mease AD. Diminished bacterial defences with intralipid. Lancet. 1980;2:819–20.

    Article  CAS  PubMed  Google Scholar 

  26. Härtel C, Schultz C, Herting E, Göpel W. Genetic association studies in VLBW infants exemplifying susceptibility to sepsis—recent findings and implications for future research. Acta Paediatr. 2007;96:158–65.

    Article  PubMed  Google Scholar 

  27. Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics. 2009;123:1314–9.

    Article  PubMed  Google Scholar 

  28. Hays SP, Smith EO, Sunehag AL. Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics. 2006;118:1811–8.

    Article  PubMed  Google Scholar 

  29. Lilien LD, Rosenfield RL, Baccaro MM, Pildes RS. Hyperglycemia in stressed small premature neonates. J Pediatr. 1979;94:454–9.

    Article  CAS  PubMed  Google Scholar 

  30. Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab. 2001;15:533–51.

    Article  CAS  PubMed  Google Scholar 

  31. Mizock BA. Blood glucose management during critical illness. Rev Endocr Metab Disord. 2003;4:187–94.

    Article  CAS  PubMed  Google Scholar 

  32. Losser MR, Bernard C, Beaudeux JL, Pison C, Payen D. Glucose modulates hemodynamic, metabolic, and inflammatory responses to lipopolysaccharide in rabbits. J Appl Physiol. 1997;83:1566–74.

    CAS  PubMed  Google Scholar 

  33. Reinhold D, Ansorge S, Schleicher ED. Elevated glucose levels stimulate transforming growth factor-beta 1 (TGF-beta 1), suppress interleukin IL-2, IL-6 and IL-10 production and DNA synthesis in peripheral blood mononuclear cells. Horm Metab Res. 1996;28:267–70.

    Article  CAS  PubMed  Google Scholar 

  34. Gregory R, McElveen J, Tattersall RB, Todd I. The effects of 3-hydroxybutyrate and glucose on human T cell responses to Candida albicans. FEMS Immunol Med Microbiol. 1993;7:315–20.

    Article  CAS  PubMed  Google Scholar 

  35. Matsukawa A, Hogaboam CM, Lukacs NW, Kunkel SL. Chemokines and innate immunity. Rev Immunogenet. 2000;2:339–58.

    CAS  PubMed  Google Scholar 

  36. Yaqoob P. Monosaturated fatty acids in parenteral nutrition, evaluation of risks and benefits. Br J Nutr. 2005;94:867–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anja Sewe for excellent technical support. This study was supported by University of LĂĽbeck Research Grants (BH, CH).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Härtel.

Additional information

Responsible Editor: Artur Bauhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haase, B., Faust, K., Heidemann, M. et al. The modulatory effect of lipids and glucose on the neonatal immune response induced by Staphylococcus epidermidis . Inflamm. Res. 60, 227–232 (2011). https://doi.org/10.1007/s00011-010-0258-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0258-5

Keywords

Navigation