Skip to main content

Advertisement

Log in

Anti-α4β1 integrin antibody induces receptor internalization and does not impair the function of circulating neutrophilic leukocytes

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

A compelling strategy for treatment of spinal cord injury is the blockade of integrin-mediated leukocyte extravasation using a monoclonal antibody (mAb) against the α4 subunit of the α4β1-integrin. However, little is known with respect to neutrophil function following anti-α4 mAb treatment. This study assessed the effects of anti-α4 mAb binding on neutrophil activation [reactive oxygen species (ROS) production], function (phagocytic activity) and anti-α4-mAb/α4β1-integrin-complex internalization.

Methods

Resting, primed or stimulated rat neutrophils were incubated ex vivo with anti-α4 mAb or isotype-control antibody. ROS production, phagocytic activity, and anti-α4-mAb/α4β1-integrin-complex internalization were determined by flow cytometry using dihydrorhodamine (DHR1,2,3), fluorescent microspheres, and indirect immunolabeling, respectively.

Results

Brief (0.5 h) incubation of resting, primed or activated neutrophils with anti-α4 mAb had no effect on ROS production and did not change neutrophil phagocytic activity. However, prolonged incubation (2 h), assessed only in resting neutrophils, increased ROS production. The anti-α4-mAb/α4β1-integrin-complex was internalized after 1 h of anti-α4 mAb treatment and remained internalized up to 6 h.

Conclusion

Neutrophil ROS production and phagocytic function remain unaltered after brief anti-α4 mAb exposure, demonstrating that use of this mAb as a treatment should not adversely affect important beneficial roles of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yednock TA, Cannon C, Vandevert C, Goldbach EG, Shaw G, Ellis DK, et al. Alpha 4 beta 1 integrin-dependent cell adhesion is regulated by a low affinity receptor pool that is conformationally responsive to ligand. J Biol Chem. 1995;270:28740–50.

    Article  CAS  PubMed  Google Scholar 

  2. Davenpeck KL, Sterbinsky SA, Bochner BS. Rat neutrophils express alpha4 and beta1 integrins and bind to vascular cell adhesion molecule-1 (VCAM-1) and mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Blood. 1998;91:2341–6.

    CAS  PubMed  Google Scholar 

  3. Nandi A, Estess P, Siegelman M. Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation. Immunity. 2004;20:455–65.

    Article  CAS  PubMed  Google Scholar 

  4. Engelhardt B, Briskin MJ. Therapeutic targeting of alpha4-integrins in chronic inflammatory diseases: tipping the scales of risk towards benefit? Eur J Immunol. 2005;35:2268–73.

    Article  CAS  PubMed  Google Scholar 

  5. Engelhardt B, Kappos L. Natalizumab: targeting alpha4-integrins in multiple sclerosis. Neurodegener Dis. 2008;5:16–22.

    Article  CAS  PubMed  Google Scholar 

  6. Fabene PF, Mora GN, Martinello M, Rossi B, Merigo F, Ottoboni L, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med. 2008;14:1377–83.

    Article  CAS  PubMed  Google Scholar 

  7. Fleming JC, Bao F, Chen Y, Hamilton EF, Relton JK, Weaver LC. α4β1 integrin blockade after spinal cord injury decreases damage and improves neurological function. Exp Neurol. 2008;214:147–59.

    Article  CAS  PubMed  Google Scholar 

  8. Condliffe AM, Kitchen E, Chilvers ER. Neutrophil priming: pathophysiological consequences and underlying mechanisms. Clin Sci (Lond). 1998;94:461–71.

    CAS  Google Scholar 

  9. Jakus Z, Berton G, Ligeti E, Lowell CA, Mocsai A. Responses of neutrophils to anti-integrin antibodies depends on costimulation through low affinity Fc gamma Rs: full activation requires both integrin and nonintegrin signals. J Immunol. 2004;173:2068–77.

    CAS  PubMed  Google Scholar 

  10. Williams MA, Solomkin JS. Integrin-mediated signaling in human neutrophil functioning. J Leukoc Biol. 1999;65:725–36.

    CAS  PubMed  Google Scholar 

  11. Pereira S, Zhou M, Mocsai A, Lowell C. Resting murine neutrophils express functional alpha 4 integrins that signal through Src family kinases. J Immunol. 2001;166:4115–23.

    CAS  PubMed  Google Scholar 

  12. Chan JR, Hyduk SJ, Cybulsky MI. Alpha 4 beta 1 integrin/VCAM-1 interaction activates alpha L beta 2 integrin-mediated adhesion to ICAM-1 in human T cells. J Immunol. 2000;164:746–53.

    CAS  PubMed  Google Scholar 

  13. Van den Berg JM, Mul FP, Schippers E, Weening JJ, Roos D, Kuijpers TW. Beta1 integrin activation on human neutrophils promotes beta2 integrin-mediated adhesion to fibronectin. Eur J Immunol. 2001;31:276–84.

    Article  PubMed  Google Scholar 

  14. Yurochko AD, Liu DY, Eierman D, Haskill S. Integrins as a primary signal transduction molecule regulating monocyte immediate-early gene induction. Proc Natl Acad Sci USA. 1992;89:9034–8.

    Article  CAS  PubMed  Google Scholar 

  15. Leussink VI, Zettl UK, Jander S, Pepinsky RB, Lobb RR, Stoll G, et al. Blockade of signaling via the very late antigen (VLA-4) and its counterligand vascular cell adhesion molecule-1 (VCAM-1) causes increased T cell apoptosis in experimental autoimmune neuritis. Acta Neuropathol (Berl). 2002;103:131–6.

    Article  CAS  Google Scholar 

  16. Wileman T, Harding C, Stahl P. Receptor-mediated endocytosis. Biochem J. 1985;232:1–14.

    CAS  PubMed  Google Scholar 

  17. Leone DR, Giza K, Gill A, Dolinski BM, Yang W, Perper S, et al. An assessment of the mechanistic differences between two integrin alpha 4 beta 1 inhibitors, the monoclonal antibody TA-2 and the small molecule BIO5192, in rat experimental autoimmune encephalomyelitis. J Pharmacol Exp Ther. 2003;305:1150–62.

    Article  CAS  PubMed  Google Scholar 

  18. Li W, Chung SC. Flow cytometric evaluation of leukocyte function in rat whole blood. In Vitro Cell Dev Biol AnimTW. 2003;39:413–9.

    Article  Google Scholar 

  19. Cepinskas G, Lush CW, Kivetys PR. Anoxia/reoxygenation-induced tolerance with respect to polymorphonuclear leukocyte adhesion to cultured endothelial cells: a nuclear factor-kB-mediated phenomenon. Circ Res. 1999;84:103–12.

    CAS  PubMed  Google Scholar 

  20. Snedecor G, Cochran W. Statistical methods. Iowa: Iowa State University Press; 1989.

    Google Scholar 

  21. Bao F, Bailey CS, Gurr KR, Bailey SI, Rosas-Arellano MP, Dekaban GA, et al. Increased oxidative activity in human circulating leukocytes in response to spinal cord injury. Exp Neurol. 2009;215:308–16.

    Article  CAS  PubMed  Google Scholar 

  22. Ibbotson GC, Doig C, Kaur J, Gill V, Ostrovsky L, Fairhead T, et al. Functional alpha4-integrin: a newly identified pathway of neutrophil recruitment in critically ill septic patients. Nat Med. 2001;7:465–70.

    Article  CAS  PubMed  Google Scholar 

  23. Wang CX, Nuttin B, Heremans H, Dom R, Gybels J. Production of tumor necrosis factor in spinal cord following traumatic injury in rats. J Neuroimmunol. 1996;69:151–6.

    Article  CAS  PubMed  Google Scholar 

  24. Fuortes M, Jin WW, Nathan C. Adhesion-dependent protein tyrosine phosphorylation in neutrophils treated with tumor necrosis factor. J Cell Biol. 1993;120:777–84.

    Article  CAS  PubMed  Google Scholar 

  25. Brandes RP, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res. 2005;65:16–27.

    Article  CAS  PubMed  Google Scholar 

  26. Riegger T, Conrad S, Liu K, Schluesener HJ, Adibzahdeh M, Schwab JM. Spinal cord injury-induced immune depression syndrome (SCI-IDS). Eur J Neurosci. 2007;25:1743–7.

    Article  PubMed  Google Scholar 

  27. Lucin KM, Sanders VM, Jones TB, Malarkey WB, Popovich PG. Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Exp Neurol. 2007;207:75–84.

    Article  CAS  PubMed  Google Scholar 

  28. Cruse JM, Lewis RE, Bishop GR, Kliesch WF, Gaitan E. Neuroendocrine-immune interactions associated with loss and restoration of immune system function in spinal cord injury and stroke patients. Immunol Res. 1992;11:104–16.

    Article  CAS  PubMed  Google Scholar 

  29. Cruse JM, Lewis RE, Dilioglou S, Roe DL, Wallace WF, Chen RS. Review of immune function, healing of pressure ulcers, and nutritional status in patients with spinal cord injury. J Spinal Cord Med. 2000;23:129–35.

    CAS  PubMed  Google Scholar 

  30. Furlan JC, Krassioukov AV, Fehlings MG. Hematologic abnormalities within the first week after acute isolated traumatic cervical spinal cord injury: a case-control cohort study. Spine. 2006;31:2674–83.

    Article  PubMed  Google Scholar 

  31. DeVivo MJ, Krause JS, Lammertse D. Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil. 1999;80:1411–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology. J Neurotrauma. 2004;21:1355–70.

    Article  PubMed  Google Scholar 

  33. Stirling DP, Liu S, Kubes P, Yong VW. Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J Neurosci. 2009;29:753–64.

    Article  CAS  PubMed  Google Scholar 

  34. Santos JL, Montes MJ, Gutierrez F, Ruiz C. Evaluation of phagocytic capacity with a modified flow cytometry technique. Immunol Lett. 1995;45:1–4.

    Article  CAS  PubMed  Google Scholar 

  35. Busetto S, Trevisan E, Patriarca P, Menegazzi R. A single-step, sensitive flow cytofluorometric assay for the simultaneous assessment of membrane-bound and ingested candida albicans in phagocytosing neutrophils. Cytometry Part A. 2004;58A:201–6.

    Article  Google Scholar 

  36. Rubin BB, Rotstein OD, Lukacs G, Bailey D, Romaschin A, Walker PM. Decreased leukocyte adhesion with anti-CD18 monoclonal antibodies is mediated by receptor internalization. Surgery. 1992;112:263–8.

    CAS  PubMed  Google Scholar 

  37. Bao F, Chen Y, Schneider KA, Weaver LC. An integrin inhibiting molecule decreases oxidative damage and improves neurological function after spinal cord injury. Exp Neurol. 2008;214:160–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Canadian Institutes of Health Research, the Ontario Neurotrauma Foundation and the Lawson Health Research Institute. JC Fleming was supported by studentships from the Ontario Neurotrauma Foundation and the Canadian Institutes of Health Research. The authors are indebted to Drs. Greg Dekaban and Kristin Chadwick for their superb advice about flow cytometry. The authors also thank Drs. Arthur Brown, Feng Bao, and Canio Polosa for their constructive suggestions regarding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer C. Fleming.

Additional information

Responsible Editor: L. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, J.C., Bao, F., Cepinskas, G. et al. Anti-α4β1 integrin antibody induces receptor internalization and does not impair the function of circulating neutrophilic leukocytes. Inflamm. Res. 59, 647–657 (2010). https://doi.org/10.1007/s00011-010-0177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0177-5

Keywords

Navigation